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Abstract
We present an augmented Lagrangian-based approach for stress-constrained topology optimization of structures subjected
to general dynamic loading. The approach renders structures that satisfy the stress constraints locally at every time step.
To solve problems with a large number of stress constraints, we normalize the penalty term of the augmented Lagrangian
function with respect to the total number of constraints (i.e., the number of elements in the mesh times the number of time
steps). Moreover, we solve the stress-constrained problem effectively by penalizing constraints associated with high stress
values more severely than those associated with low stress values. We integrate the equations of motion using the HHT-
method and conduct the sensitivity analysis consistently with this method via the “discretize-then-differentiate” approach.
We present several numerical examples that elucidate the effectiveness of the approach to solve dynamic, stress-constrained
problems under several loading scenarios including loads that change in magnitude and/or direction and loads that change
in position as a function of time.

Keywords Local stress constraints Topology optimization Augmented Lagrangian HHT- method Newmark-
method Elastodynamics

1 Introduction

When considering material failure, a dynamic topology
optimization formulation should include local stress con-
straints at each time step of the dynamic analysis, so that the
material strength is not exceeded at any point of the structure
for the duration of the dynamic event. Although consistent
with the local definition of stress, a formulation of this type
requires a tremendous amount of stress constraints that need
to be handled by the optimizer, which adds complexity to
the already challenging static, stress-constrained problem.
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In fact, one could argue that the large number of stress
constraints together with other well-known challenges rela-
ted to the stress-constrained problem (i.e., stress constraint
nonlinearity and degeneracy of the solution space) may be
the reason why a stress-constrained topology formulation
for structures subjected to general dynamic loading has not
been introduced thus far. In this study, we introduce topol-
ogy optimization of structures subjected to general dynamic
loading, in the time domain, while considering local stress
constraints at every time step.

The literature on dynamic topology optimization is vast,
yet the majority of studies focus on stiffness maximization
methods or other dynamic performance measures, while
neglecting the effects of material strength. In an effort to
account for the effect of dynamic loads in design, two main
directions have been pursued for topology optimization of
elastodynamic problems under forced vibration: frequency-
domain methods and time-domain methods. Frequency-
domain methods are less computationally expensive than
time-domain methods because the latter require a time
integration scheme to solve the dynamic analysis problem.
Frequency-domain approaches are useful for periodic
loading or when modal quantities are of interest (e.g.,
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eigenfrequency optimization problems). Using frequency-
domain techniques, a study that has considered stress
constraints in dynamic topology optimization is that by
Long et al. (2019). However, our main goal is to consider
stress constraints in the time domain. The formulation intro-
duced herein could be used, for example, to design struc-
tures subjected to shock/impact loading. These types of
structures or structural components are, in general, subjec-
ted to non-periodic dynamic loading, and thus, their design
requires time-domain analysis.

Dynamic topology optimization in the time domain has
been used in several applications. For example, Min et al.
(1999) used it to minimize the mean dynamic compliance,
Turteltaub (2005) to minimize the time-averaged stress
energy of functionally graded composites, Dahl et al. (2008)
to generate band-gap structures, Le et al. (2012) to tailor
energy propagation through microstructures, Zhang and
Kang (2014) to reduce the transient response of piezoelec-
tric structures, and Zhao and Wang (2017) to minimize
either displacements at a target node or to minimize the
dynamic compliance. In those studies, the dynamic problem
is solved using traditional time integration schemes (e.g.,
the Newmark- method). To solve the dynamic problem in
an approximate way, other researchers have adopted model
reduction techniques, which use different modal superpo-
sition methods (e.g., Yoon 2010; Zhao and Wang 2016).
Dynamic topology optimization in the time domain has
been used for applications beyond those discussed here,
yet for the sake of brevity, the interested reader is referred
to Giraldo-Londoño and Paulino (2021a) and the refer-
ences therein for a more comprehensive literature review
on the topic. Among the studies discussed here, none has
considered stress constraints in the time domain.

In this work, we introduce a framework for topology opti-
mization of structures subjected to general dynamic loading,
which considers stress constraints locally for each time
step of the dynamic analysis. To solve the dynamic, stress-
constrained problem, we adopt an augmented Lagrangian
(AL) formulation, building upon our previous work on
static, stress-constrained topology optimization (Senhora
et al. 2020; Giraldo-Londoño and Paulino 2020, 2021b). In
our previous work, we employ the AL method in its tradi-
tional form (Nocedal andWright 2006; Bertsekas 1999), yet
we normalize the penalization term of the AL function (i.e.,
all terms containing the stress constraints) with respect to
the number of constraints, which allows the method to solve
problems with a large number of constraints. As shown by
Senhora et al. (2020), the normalization scheme leads to
the solution of problems with a number of stress constraints
ranging from a few thousands to over a million or beyond.
Because the dynamic, stress-constrained problem is more
challenging than the static one, we apply suitable modifica-

tions to the AL formulation, which enable us to solve the
new problem effectively.

To solve the dynamic, stress-constrained problem effi-
ciently, we use a gradient-based optimization algorithm
for which we require the sensitivity of the AL func-
tion. We compute the sensitivity using the adjoint vari-
able method based on the discretize-then-differentiate
approach (Jensen et al. 2014), so that the adjoint prob-
lem is constructed in terms of state and time variables that
have both been discretized a priori. Because the discretize-
then-differentiate approach is tied to a particular time inte-
gration scheme, we adopt the HHT- method (Hilber et al.
1977) to solve the dynamic analysis problem. The HHT-

method is a generalization of the Newmark- method
(Newmark 1959) and reduces to the Newmark- method for

0. The HHT- method is general enough and reduces
to other classical time integration schemes given a proper
choice of parameters.

The remainder of this paper is organized as follows.
Section 2 discusses the topology optimization statement
for dynamic, stress-constrained topology optimization, and
Section 3 discusses the HHT- method used to solve
the dynamic analysis problem. We discuss the AL-
based formulation for dynamic, stress-constrained topology
optimization in Section 4, and present the discretize-
then-differentiate adjoint sensitivity analysis in Section 5.
Moreover, Section 6 contains some implementation details,
and Section 7 discusses the results of four numerical
examples, which we solve to show the effectiveness of
the approach. We finalize the paper with some concluding
remarks in Section 8. Afterwards, we provide three
appendices, where the first shows details of the design
variable update scheme, the second shows convergence
plots for some of the numerical examples, and the third
shows the nomenclature used in this study.

2 Stress-constrained formulation
for elastodynamics

We aim to solve mass minimization topology optimization
problems with local stress constraints imposed at all time
steps. In a discretized setting, our objective is to minimize
the volume fraction, z , of a structure subjected to dynamic
loading, such that the stresses are limited via local stress
constraints, z u 0 for all time steps 0
and at all stress evaluation points 1 (e.g.,
defined at the centroid of each finite element). The topology
is defined by the design variables, z 0 1 , while the
physical response of the system (i.e., the displacement field)
is given by the state variables, u 0 , which
we obtain from the solution of the discretized equations of
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motion of a continuum system. Mathematically, we state the
problem as follows:1

min
z 0 1

z
A y

A 1
s.t. z u 0 0 1

with: Mu Cu Ku f 0 (1)

where A 1 is the vector of element areas (2D) or
volumes (3D),

tanh tanh

tanh tanh 1
(2)

is a volume interpolation function, defined by the threshold
projection function (Wang et al. 2011), which we use to
compute the element volume fractions as a function of the
filtered densities. Parameter controls the aggressiveness
of the threshold projection and parameter is the threshold
projection density. The vector y 1 contains the
filtered densities for all elements, and it is obtained as
y Pz, where P is the filter matrix, which we compute as
(Zegard and Paulino 2016):

1

with max 0 1
x x 2

(3)

where is the volume (3D) or area (2D) of the -
th finite element, x x 2 is the Eucledian distance
between the centroids of elements and , respectively,
is the filter exponent, and is the filter radius. Finally,
Mu Cu Ku f is the discretized equation of
motion for elastodynamics,2 which we solve to obtain the
time-dependent displacement field necessary to evaluate the
stress constraints at each time step, .

2.1 Mass, stiffness, and dampingmatrices

To solve the equation of motion,Mu Cu Ku f , we
need to obtain the mass, stiffness, and damping matrices at
each optimization step. The mass and stiffness matrices are
obtained as

M
1

m and K
1

k (4)

1Conceptually, the equation, Mu Cu Ku f , in (1) is the
discrete counterpart of the equation of motion, Mu Cu Ku
f. However, the actual equation of motion used in the numerical
implementation is given in (12).
2In the current formulation, we solve the equation of motion via the
HHT- method, as we discuss in detail later.

where 1 is the finite element (FE) assembly operator,
and

m 0N N dx and k B D0B dx (5)

are the mass and stiffness matrices of element , respec-
tively, in which 0 and D0 are the mass density and the
material moduli matrix of the solid material, respectively;
N is the matrix of shape functions; and B is the strain-
displacement matrix. Function

1

is the volume interpolation function modified by an Ersatz
parameter, 1, and function

1

is a stiffness interpolation function, which we evaluate in
terms of the RAMP function (Stolpe and Svanberg 2001;
Bendsøe and Sigmund 2003) as follows:

1 0 1
(6)

where 0 is the RAMP penalization parameter. The Ersatz
parameter is used to prevent numerical instabilities arising
when 0.

To account for energy losses, we consider proportional
damping (for the sake of simplicity and in the absence of
additional information) such that the damping matrix, C,
is obtained as a linear combination of the mass and the
stiffness matrices, as follows:

C M K (7)

where and are the Rayleigh damping coefficients.

2.2 Stress constraint definition

The stress constraints in (1) are based on the polynomial
vanishing constraint introduced by Giraldo-Londoño and
Paulino (2020). Specifically, the stress constraints are
evaluated as

z u 2 1 0

0 1 (8)

where

lim 1 (9)
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is a failure function based on the von Mises strength
criterion,3 where

V0 (10)

is the von Mises stress at the centroid of element and
at time step ; 11 22 12 is the vector of
Cauchy stresses (in Voigt notation) evaluated at the centroid
of element and at time step ;

V0

1 1 2 0
1 2 1 0
0 0 3

is a matrix of constant coefficients; and lim is the material
stress limit in uniaxial tension. The vector of Cauchy
stresses at time step is computed as

D0B u (11)

where u is the displacement vector of element at time
step .

The von Mises stresses given in (10) are computed using
the elastic properties of solid material (because are
computed using D0) rather than using elastic properties
that have been interpolated for intermediate density values.
Given that the von Mises stresses are computed using
properties of the solid material and the stress constraints,

z u , in (1) are a variation of the traditional vanishing
constraints (Cheng and Jiang 1992), the solution space
associated with the optimization statement (1) is unrelaxed.
This is unlike typical approaches based, e.g., on the -
relaxation approach (Cheng and Guo 1997) or the -
relaxation approach (Bruggi 2008), in which the feasible
solution space is relaxed.

3 The HHT- method

Similarly to Giraldo-Londoño and Paulino (2021a), this
study solves the dynamic analysis problem via the HHT-
method (Hilber et al. 1977). This method is a generalization
of the classical Newmark- (Newmark 1959), and reduces
to the Newmark method for 0. The HHT- method
contains numerical damping controlled by a parameter,
, which helps attenuate the response controlled by

high-frequency modes, while leaving that controlled by

3Although different strength criteria including von Mises, Tresca,
Drucker-Prager, and Mohr–Coulomb can be considered by means of
the unified strength function by Giraldo-Londoño and Paulino (2020),
here we only consider the von Mises strength criterion (von Mises
1913) to keep the focus of the study on the dynamic problem.

low-frequency modes essentially unaffected. The HHT-
method uses the parameter to modify the equation of
motion (EOM) by introducing a numerical lag to damping
forces, restoring forces, and external forces, as follows:

Mu 1 Cu Cu 1 1 Ku Ku 1

1 f f 1 1 . (12)

The modified EOM is solved together with the Newmark-
finite difference (FD) relationships,

u u 1 u 1
2 1

2
u 1 u

u u 1 1 u 1 u . (13)

We replace relationships (13) into the modified EOM (12)
and rewrite it in residual form, as follows:

R M1u M0u 1 C0u 1 Ku 1 1 f f 1 0
(14)

where

M1 M 1 C 1 2K

M0 1 1 C 1
1

2
2K and

C0 C 1 K. (15)

To solve the dynamic analysis problem, first we solve (14)
for u and use it to update u and u using (13). For 0,
we use the initial conditions, u0 and u0 and compute the
initial acceleration vector as u0 M 1 f0 Cu0 Ku0 .

4 AL-basedmethod tailored
to elastodynamics

To solve the dynamic, stress-constrained problem, we adopt
a slightly modified version of the AL-based approach by
Giraldo-Londoño and Paulino (2020, 2021b), in which
the penalty term of the AL function is normalized with
respect to the number of constraints. For the static, stress-
constrained problem, the number of constraints (for a
single load case) is chosen as the number of elements,
(different choices are possible). However, given that the
dynamic, stress-constrained problem imposes one constraint
per element and per time step, we need to modify the
term used to normalize the penalty of the AL function. For
the dynamic, stress-constrained problem, we normalize the
penalty term of the AL function using the factor, , so
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that we solve the following optimization problem at each
step, , of the AL method:4

min
z 0 1

z u0 u z

1

0 1

z u
2

z u 2

(16)

where

z u max z u (17)

1 z u and (18)

1 min max . (19)

Parameters are Lagrange multiplier estimators at the
-th step of the augmented Lagrangian method and are

updated as shown in (18) (Nocedal and Wright 2006).
Moreover, parameters are the quadratic penalty terms,

which we update as shown in (19). The initial values, 1

and 1 , are selected by the user.5

As shown in (19), we update the quadratic penalty terms
using parameters 1 and impose an upper limit,
max, to avoid ill-conditioning. We introduce the following

expression to compute the update parameters:

2
1

2
(20)

where 1 is a constant term and

lim (21)

is the relaxed von Mises stress of element at time step .
We define the expression to compute such that
when 0, and 2 when , which is
intended to penalize constraints associated with high stress
values more severely than those associated with low stress

4Note that z u 2 means z u 2.
5The values of 1 , 1 , and max need to be found via an initial

calibration process. We have noticed that 1 0 is a suitable choice,

and thus, the calibration process is typically conducted to find 1 and

max. As a general guideline, 1 should not be too small because
it slows down convergence and max should not be too large because
it leads to numerical instability. Once appropriate values for 1 and
max have been found, our experience indicates that they can be used to

solve different problems independently of the domain geometry, mesh
size, and number of time steps.

values. The relaxed vonMises stresses given in (21) are used
to update the quadratic penalty terms in (19) and to plot the
von Mises stress maps in Section 7. However, these relaxed
stresses are not used to evaluate the stress constraints.
Instead, the stress constraints are evaluated based on the
apparent local vonMises stresses computed using the elastic
parameters of the solid material, as shown in (10)–(11),
which we employ to preserve the shape of the feasible
solution space.

We highlight two main differences between the AL
function in (16) and that used by Giraldo-Londoño and
Paulino (2020, 2021b). First, the new AL function uses
a different normalization term (i.e., ) to account for
the increasing number of constraints. Second, the new
function considers one quadratic penalty term, , for each
constraint, in contrast to the single quadratic penalty term,

, used by Giraldo-Londoño and Paulino (2020, 2021b).
We found that these changes are necessary to improve the
robustness of the approach to solve the dynamic topology
optimization problem. The use of one quadratic penalty
term per constraint is particularly important because it
allows penalizing constraints independently, which is useful
for time steps in which the stress limit is not exceeded in
any element. Next we provide a couple of remarks.

Remark 1 The literature on stress-constrained topology
optimization typically handles the stress constraints using
aggregation techniques, so that the local constraints are
aggregated into one global or a few regional constraints
(e.g., see Le et al. 2010; Lee et al. 2012; Luo et al. 2013; De
Leon et al. 2015; Holmberg et al. 2013a; Xia et al. 2018).
These clustering techniques aim to approximate the maxi-
mum stress in the design domain using a smooth approx-
imation of the maximum function, such as the -norm
function (Park 1995) or the function (Kreisselmeier and
Steinhauser 1979). The quality of the approximation using
either of these functions depends on the parameters that
define them (e.g., they depend on the value of if the -
norm function is used). Thus, the quality of the solutions
obtained using these aggregation approaches will depend
on the parameters of the approximation. More importantly,
the solution to which one arrives when using aggregation
approaches is not the same as the solution of the original
optimization problem with local stress constraints (the two
problem statements are different).

Remark 2 The AL method is fundamentally different from
stress aggregation approaches because it does not require
the use of a surrogate inequality based on a smooth
approximation of the maximum function. Instead, the AL
method solves the original optimization problem with local
constraints as a sequence of minimization problems, i.e.,
the AL sub-problems (16), whose solution is expected
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to converge to that of the original optimization problem
with local constraints. Moreover, it has been found that
the AL method exhibits global convergence properties
even for problems with degenerated constraints (Izmailov
et al. 2012; Andreani et al. 2012). Such global conver-
gence attributes cannot be guaranteed by stress aggregation
approaches.

5 Discretize-then-differentiate: adjoint
sensitivity analysis

Sensitivity analysis is a fundamental part of any topol-
ogy optimization formulation solved using gradient-based
algorithms. Given that topology optimization problems usu-
ally involve thousands or even millions of design variables,
it is of the utmost importance that the sensitivity anal-
ysis is conducted efficiently. In an effort to reduce the
computational cost, we adopt the adjoint method for sen-
sitivity analysis. Employing the adjoint method, sensitivity
analysis in dynamic topology optimization has tradition-
ally been conducted using either of two main approaches.
The first, which is known as the differentiate-then-discretize
approach, uses discretized state variables and considers time
as a continuous variable, leading to an adjoint system in the
form of a terminal boundary value problem, which is then
discretized in time and solved using a time integration tech-
nique similar to that used to solve the primal problem. The
differentiate-then-discretize approach is the most widely
used in dynamic topology optimization (e.g., refer to Arora
and Cardoso 1992; Turteltaub 2005; Nomura et al. 2007;
Dahl et al. 2008; Elesin et al. 2012; Mello et al. 2012; Zhang
and Kang 2014; Zhao and Wang 2016, 2017).

The second, known as the discretize-then-differentiate
approach, applies the adjoint method to the discretized
problem (both in space and time), so it is tied to a specific
time integration scheme. Consequently, the discretize-
then-differentiate approach tends to be more cumbersome
than the differentiate-then discretize approach. However,
Jensen et al. (2014) demonstrated that the differentiate-
then-discretize approach leads to consistency errors (i.e.,
differences between the computed sensitivities and the exact
sensitivities of the numerical model), which may cause
problems for large time steps. In pursuit of a consistent
sensitivity analysis, the present work adopts the discretize-
then-differentiate approach (Le et al. 2012; Jensen et al.
2014; Nakshatrala and Tortorelli 2016) consistently with the
HHT- method discussed previously. Because the HHT-
method is general, it can be simplified to other classical
numerical integration schemes (e.g., trapezoidal, explicit
central differences, average constant acceleration), and thus,
the sensitivities derived here can work for other classical
methods.

Using the discretize-then-differentiate approach, we
obtain the sensitivity of the AL function as

d

d
1

u
u

. (22)

To eliminate the terms u from the expression above,
we use the residual term (14) together with the initial
condition

R0 Mu0 Cu0 Ku0 f0 0 (23)

and the Newmark- FD relationships (13), which we rewrite
in residual form as follows:

P u u 1 u 1
2 1

2
u 1 u

0 1

Q u u 1 1 u 1 u

0 1 . (24)

We introduce adjoint variables, , and for
0 , resembling pseudo-displacement, pseudo-

velocity, and pseudo-acceleration fields, respectively, and
rewrite (22) as

d

d
0

u
u

0

R

0

R
u

u R
u

u R
u

u

1

P

0

P
u

u P
u

u P
u

u

1

Q

0

Q
u

u Q
u

u Q
u

u
.

(25)

The terms P and Q have no explicit dependence on
the design variables, so P 0 and Q 0. Moreover,
since the initial conditions are independent of the design
variables, we also have that u0 0 and u0 0. These
simplifications allow us rewrite (25) more conveniently as

d

d
0

R

0
R0

u0 1
R1

u0 1
P1

u0 1
Q1

u0

u0

1 1

R
u

P
u

Q
u u

u

1 1

R
u

P
u

Q
u

u

1 1

R
u

P
u

Q
u

u
.

(26)



Local stress constraints in topology optimization of structures...

If we define , , and such that all terms containing
u , u , and u vanish from (26), then the

sensitivity of the AL function simplifies to

d

d
0

R
. (27)

To achieve this simplified form, we define the adjoint
problem, such that

0
R0

u0 1
R1

u0 1
P1

u0 1
Q1

u0
0 (28)

for 0 and

1

R
u

P
u

Q
u u

0

1

R
u

P
u

Q
u

0 and (29)

1

R
u

P
u

Q
u

0

for 1 .
To solve the adjoint system (28)–(29), we use (14), (23),

and (24) to obtain:

u
0 M1

2

(30)

for ,

1 u 1
K 1 C0

M1 1 M0
2

1
1

2

1 1 (31)

for 1 1, and

M 0 M0 1
1

2
2

1 1 1 (32)

for 0.
To solve the adjoint problem, we require the value of

u 1 , which we obtain from the
expression of z u0 u in (16). That is,

u
1

1
u

(33)

where

u

0 if and

u
otherwise.

(34)

The non-zero expression for u can be computed in
an element-wise manner as

u
3 2 1

1

lim u
(35)

where u is the displacement vector of element at time
step and

u u
D0B

V0 . (36)

The use of the volume interpolation function, y , and
the stiffness interpolation function, y , requires that we
rewrite (27) using the chain rule:

d

d
1

d

d

d

d
(37)

where V y and E y are vectors containing
the volume and stiffness interpolation function values for all
elements, respectively, and

d

d
0

R
and

d

d
0

R
. (38)

We write (37) more compactly as

d

dz
E
z
d

dE
V
z
d

V
(39)

where

E
z

P y and
V
z

P y (40)

with diag 1 and
diag 1 .

To obtain the terms R and R in (38), we
use (23) for 0 and obtain

R K
u0 u0 k u 0 u 0 and

R M
u0 u0 m u 0 u 0 . (41)

Likewise, we use (14) for 1 and obtain

R K
1 u u u 1 u 1

k 1 u u u 1 u 1 and

R M
u 1 u u 1

m u 1 u u 1 . (42)
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We use double subscripts or 1 in (41) and (42)
to refer to element-wise quantities (i.e., vectors of elemental
displacements, velocities, or accelerations).

Finally, we use the AL function in (16) to obtain
and in (37) and obtain:

1

0 1

and

A 1
1

0 1

(43)

where the first term of comes from the definition
of z in (1). Because has no explicit dependence on

(see (17)), then 0. However, depends
explicitly on , as shown in (1)2 and (17). Thus, we use
(17), with z u 2 1 from (1)2, and obtain

as follows:

0 if and

2 1 otherwise.

(44)

6 Some implementation details

The implementation of the dynamic, stress-constrained to-
pology optimization formulation introduced previously

follows the schematic flowchart shown in Fig. 1. The first
step is to read all necessary input data, including the finite
element discretization and boundary conditions, initial val-
ues for and , initial density distribution, z 0 , para-
meters for the optimizer, and convergence tolerances. Using
the provided input data, the next step is to use the method
of moving asymptotes (MMA) to find an approximate
minimizer of the -th AL sub-problem (16). A flowchart
describing the main steps required to find the approxi-
mate minimizer of the -th AL sub-problem is shown on
the right-hand side of Fig. 1. Once the approximate min-
imizer, z , has been obtained, the next step is to update
the Lagrange multiplier estimators, 1 , and the quadratic

penalty terms, 1 , as shown in (18) and (19), respec-
tively. This process is repeated until some convergence
criteria are satisfied. We determine that the solution has con-
verged if 1 sum z 1 z Tol and 1
TolS, where Tol and TolS are prescribed tolerances, or if
has reached a maximum number of iterations, MaxIter.

6.1 Solution of the AL sub-problems

We use MMA to solve the AL sub-problems (see flowchart
on the right-hand side of Fig. 1), for which we need to eva-
luate the sensitivity z of the AL function. The
Algorithm 1 contains a pseudo-code with the main steps
required to evaluate and z in order to update

Fig. 1 Schematic flowchart of the AL-based framework introduced to solve dynamic, stress-constrained topology optimization problems
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the design variables, and thus, solve each AL sub-problem.
We solve the AL sub-problems in an approximate way by
running a small number, MMA Iter, of MMA iterations.
Running a few MMA iterations per AL sub-problem proved
effective in solving quasi-static stress-constrained topology
optimization problems (Senhora et al. 2020; Giraldo-
Londoño and Paulino 2020, 2021b) and has also proven
effective to solve the problem in the dynamic setting. To

facilitate the implementation of the dynamic, stress-cons-
trained formulation introduced herein, the interested reader
is referred to Giraldo-Londoño and Paulino (2021a) for a
Matlab implementation of the HHT- method (line 4 of
Algorithm 1) and that of the adjoint problem (line 10 of
Algorithm 1), and to Giraldo-Londoño and Paulino (2021b)
for a Matlab implementation of the AL-based formulation
in the quasi-static setting.

6.2 SpecializedMMA version

We update the design variables using a version of the
method of moving asymptotes (MMA) (Svanberg 1987)
especially designed to solve the AL optimization problem.
We use this simplification because each AL sub-problem is
in practice, an unconstrained optimization problem. At each
AL step, , we approximate the AL sub-problem (16) with
the approach discussed in Appendix A.

7 Results and discussion

This section presents several numerical examples to eluci-
date the ability of the AL-based framework to solve dyna-
mic, stress-constrained topology optimization problems.
Specifically, we solve four two-dimensional design prob-
lems that explore different dynamic loading scenarios,
including loads that are fixed at a point and vary in magni-
tude and/or direction, and loads that are fixed in magnitude

and move in space. To solve all problems, we use the set of
default input parameters shown in Table 1.6

7.1 L-bracket design under a rotating load

This example deals with the design of an L-bracket subjec-
ted to a load of magnitude that rotates at a prescribed
angular frequency, , as depicted in Fig. 2 (left). We design
the L-bracket assuming that the load rotates three times and,
to avoid large dynamic amplification effects, we use a load

which we ramp linearly from 0 at 0 to
at 2 (i.e., at the first quarter cycle),

as shown in Fig. 2 (right). The L-bracket is one of the
typical benchmark problems found in the stress constraints
literature (e.g., see Pereira et al. 2004; Bruggi 2008; Paris

6The numerical results presented in this section were obtained using
a Matlab implementation of the proposed formulation running on a
computer with an i7-4930k CPU at 3.40 GHz and 256 GB of RAM
running on a 64-bit operating system.
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Table 1 Input parameters used to solve all examples

Initial Lagrange multiplier estimators, 1 0

Initial penalty factors, 1 10

Maximum penalty factor, max 200,000

Penalty factor update parameter, 1.05

RAMP penalization factor, 0 6

Nonlinear filter exponent, 3

Ersatz parameter, 10 6

MMA iterations per AL step, MMA Iter 10

Initial threshold projection penalization factor, † 1

Maximum threshold projection penalization factor, †
max 12

Threshold projection density, 0.5

Initial guess, z 0 0.5

Convergence tolerance on design variables, Tol 0.00075

Convergence tolerance on stress constraints, TolS 0.007

Maximum number of AL steps, MaxIter 100

†Parameter starts at 1 and increases by 2 every two AL steps and up

to the maximum value, max

et al. 2009, 2010; Amstutz and Novotny 2010; Le et al.
2010; Guo et al. 2011; Bruggi and Duysinx 2012; Holmberg
et al. 2013a, b; Emmendoerfer Jr and Fancello 2014,
2016). To facilitate reproduction of the results, Table 2
displays all additional input parameters used for the
design.

Using a regular mesh with 29,584 Q4 elements generated
with PolyMesher (Talischi et al. 2012a), we obtain the
results shown in Fig. 3 for various values of . The top
figures display the optimized topologies of the L-bracket
and the bottom ones the envelope of von Mises stress during
the entire loading time. The envelope of von Mises stress
for each element is computed as the maximum von Mises
stress of that element for all time steps. As shown by the
stress maps, the AL-based framework renders optimized

Table 2 Input parameters for the L-bracket

L-bracket length, 1 m

L-bracket thickness, 0 1 m

Applied load, 1.5 106 N

Load distribution length, 0.06 m

Young’s modulus of solid material, 0 70 GPa

Poisson’s ratio of solid material, 0 0.3

Mass density of solid material, 0 2700 kg/m3

Stress limit, lim 100 MPa

Simulation time, max 6

Number of time steps, 75

Rayleigh damping parameters, and 10 1 10 5

Filter radius and filter exponent, and 0.05 m and 3

topologies that satisfy the stress constraints locally at every
point of the design domain and for every time step of the
dynamic analysis. The results also show that the optimized
designs depend on the value of , leading to structures
with larger volume fractions as increases. The increase in
volume fraction as increases is expected because inertial
forces become more dominant as the load changes direction
at a faster rate, which leads to increased von Mises stress
as compared to a static-like situation. One can also observe
that the complexity of the lateral bracing system of the
L-bracket increases when 100 rad/s. The increase
in complexity is expected to happen in order to prevent
excessive horizontal deflections when the dynamic effects
become relevant. To verify that the input parameters from
Table 1 are suitable to solve the stress-constrained problem
independently of the number of constraints, we solved the
L-bracket problem for 5 rad/s with 750 and

7500, which corresponds to 20.2 106

and 202 106 stress constraints, respectively, and
obtained consistent results in both cases.

Fig. 2 L-bracket subjected to a load, , rotating at a prescribed angular velocity, . To avoid excessive dynamic amplification effects, we ramp
linearly from 0 at 0 to at 2



Local stress constraints in topology optimization of structures...

Fig. 3 Optimized topologies
(top) and von Mises stress
envelopes (bottom) of the
L-bracket for various
frequencies, (rad/s). The
values of correspond to the
optimized volume fractions,

z , for each design

To visualize the evolution of von Mises stress during
the loading history, Fig. 4 depicts the deformed shapes of
the optimized topologies form Fig. 3 at various instances
in time. As shown by these results, different members of
the optimized designs reach the stress limit at different

instances in time. For example, for 0.25 max and
0.75 max, the overall tendency is for both the bottom

chord and the region near the re-entrant corner of the
bracket to reach the stress limit, and for 0.50 max

and max, the general tendency is for the diagonal

Fig. 4 Snapshots of von Mises stress maps at various instances in time for the designs from Fig. 3
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Fig. 5 Time histories of
horizontal displacements at the
load application point (left) and
of maximum and minimum von
Mises stress values (right)
corresponding to the designs of
Fig. 3: (a) 5 rad/s, (b)

50 rad/s, (c) 100
rad/s, and (d) 150 rad/s

members at the upper part of the bracket to reach the
stress limit. The bottom chord and the members attached
to the re-entrant corner become highly stressed when the
bracket deforms mainly vertically and the diagonal member
a the upper part becomes highly stressed when the bracket
deforms horizontally. This means that optimized designs
are effective to restrict the movement of the bracket in all
directions, which is consistent with the rotating load acting
on the bracket.

To have a more complete view of the dynamic behavior
of the optimized L-brackets, we display the time history
of horizontal displacements at one of the nodes where the
load is applied as well as the time history of maximum and
minimum von Mises stresses in the entire design domain.7

7To obtain the von Mises stresses shown in Fig. 5 (right) and in similar
figures hereafter, we only select the elements with density greater than
or equal to 0.5.

As shown by the results in Fig. 5 (left), the dynamic effects
become more notorious as increases. The results in Fig. 5
(right) verify that the formulation indeed satisfies the stress
constraints throughout the entire duration of the dynamic
loading.

7.2 Double corbel design under dynamic vehicular
loads

In this example, we design a double corbel whose geometry
and boundary conditions are depicted in Fig. 6. The corbel
is subjected to two dynamic loads, 1 and 2 , which
are intended to simulate dynamic vehicular loads, , in
addition to the dead weight of the deck supported by the
corbel, . For simplicity, we assume that the vehicular
loads are given by a sinusoidal function and apply the dead
load linearly between 0 and 2 , similarly to
the way load was imposed in the previous example. We
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Fig. 6 Double corbel subjected to dynamic loads, 1 and 2 (left), and their explicit time history (right)

consider two loading scenarios, one in which the loads are
in phase (i.e., 1 2 ) and one in
which the loads are out of phase (i.e., 1

and 2 ). We include the second loading
scenario to investigate the effect of the rotation induced to
the structure by the out-of-phase loads.

To facilitate reproduction of the results, Table 3 provides
relevant input parameters related to the corbel geometry,
loading, material properties, among others. As shown in
the table, we use material properties for steel, which is
because the purpose of this example is to find the optimized
distribution of reinforcement within the corbel. Finally,

Table 3 Input parameters for the double corbel

Dimension, 0.30 m

Dimension, 0.35 m

Dimension, 0.15 m

Dimension, 0.20 m

Dimension, 0.25 m

Corbel thickness, 0 0.30 m

Load magnitude, 0 2.5 106 N

Load eccentricity, 0.20 m

Load distribution length, 0.05 m

Young’s modulus of solid material, 0 200 GPa

Poisson’s ratio of solid material, 0 0.3

Mass density of solid material, 0 7800 kg/m3

Stress limit, lim 420 MPa

Simulation time, max 6

Number of time steps, 75

Rayleigh damping parameters, and 5 1 10 5

Filter radius and filter exponent, and 0.03 m and 3

although the corbel geometry is symmetric, one cannot
guarantee to obtain symmetric topologies, and thus, we
enforce symmetry to the space of density fields with respect
to the vertical axis (Giraldo-Londoño and Paulino 2021b).

We design the corbel using a mesh composed of 30,000
polygonal finite elements generated with PolyMesher
and obtain optimized topologies for various values of .
Figure 7 displays two sets of results: one for in-phase
loading (top) and one for out-of-phase loading (bottom).
The results show that the tension members (i.e., the steel
reinforcement) are more inclined when the loads are out of
phase than when the loads are in phase. That is because
the in-phase loading produces more horizontal stresses than
out-of-phase loading, leading to more horizontal members
developing in the in-phase loading scenario.

The results of Fig. 7 also show that the optimized topol-
ogy of the corbel is not sensitive to the loading frequency,
except for the case in which the frequency is highest (i.e.,
for 500 rad/s). For that loading frequency, the trian-
gular region on the upper part of the design under in-phase
loading shrinks as compared to designs obtained for lower
frequencies. Similarly, when 500 rad/s, the design
under out-of-phase loading develops a cross member at the
center of the corbel, which helps to prevent the increasing
rotational effects generated as increases. Note that, inde-
pendently of the type of loading used, the optimized designs
of the corbel are unlike traditional corbel designs, which
consists mainly of horizontal stirrups. Thus, the designs
obtained in this study can serve as a guideline for corbel
designs with optimized performance.

The stress maps shown in Fig. 7 are envelopes obtained
for the entire loading history. To gain better understanding
of the dynamic behavior of the two types of design, Fig. 8
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Fig. 7 Double corbel topologies
and von Mises stress envelopes
obtained for various values of
(rad/s). The top set of results
correspond to the case when
1 and 2 are in phase and

the bottom set of results to the
case when 1 and 2 are
out of phase. The values of
correspond to the optimized
volume fractions, z , for
each design

Fig. 8 Snapshots showing the
evolution of the von Mises stress
maps at various instances in
time for the corbels designed for

500 rad/s. The top set of
results corresponds to the case
in which 1 and 2 are in
phase and the bottom set to the
case in which 1 and 2
are out of phase
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Fig. 9 Dynamic response
comparison for the optimized
designs of Fig. 7: (a) 5
rad/s, (b) 100 rad/s, (c)

200 rad/s, and (d)
500 rad/s. The left set of

results displays the time histories
of vertical displacements at the
point where 2 is applied and
the right set of results displays
the time histories of minimum
and maximum von Mises stress

Fig. 10 Pillow bracket domain and boundary conditions. An eccentric shaft rotating at a given angular frequency (left) is represented by a rotating
load, , distributed in a nonuniform way over the contact area of the rod (right).We ramp linearly from 0 at 0 at

2
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Table 4 Input parameters for the pillow bracket

Pillow bracket width, 0.1 m

Pillow bracket thickness, 0 0.05 m

Applied load, 2 104 N

Contact angle, 0 30

Young’s modulus of solid material, 0 70 GPa

Poisson’s ratio of solid material, 0 0.3

Mass density of solid material, 0 2700 kg/m3

Stress limit, lim 250 MPa

Simulation time, max 6

Number of time steps, 75

Rayleigh damping parameters, and 10 1 10 5

Filter radius and filter exponent, and 1.5 10 3 m and 3

displays the von Mises stress maps for the in-phase design
and the out-of-phase design obtained for 500 rad/s
at various instances in time. As observed from these results,
the stress maps for the design under in-phase loading are
symmetric over time. However, the stress maps for the out-
of-phase loading are not symmetric and different regions of
the structure reach the stress limit at different instances in
time.

To compare the dynamic response between the two types
of designs, Fig. 9 displays the time history of vertical
displacements at the location where 2 is applied as well
as the time history of maximum and minimum von Mises
stress in the entire design domain. As the results clearly
demonstrate, the vertical displacements of the designs under
in-phase loading are significantly smaller than those under
out-of-phase loading. The larger displacements observed for
the out-of-phase designs are expected due to the rocking
effect induced by this type of loading, which is not present
in the in-phase designs due to their symmetric displacement
field (cf. Fig. 8). Although the out-of-phase designs deflect
more than the in-phase designs, the von Mises stress
histories show that both designs satisfy the stress constraints
during the entire loading history.

7.3 Pillow bracket design under a rotating
distributed load

This example considers the design of a pillow bracket
subjected to a distributed force that rotates at a given
angular frequency, , as shown in Fig. 10. This design aims
to represent the loading scenario of Fig. 10 (left), in which
an eccentric shaft rotates at a given angular frequency,
leading to a nonuniform load distribution that changes in
position along the inner circle of the bracket. All designs
presented in this example assume that the load rotates three
times and, as in the first example, the load is increased
linearly between 0 at 0 and at

2 . All input parameters related to this example,
including dimensions, loading, and material properties, are
displayed in Table 4.

To obtain all designs in this example, we use
PolyMesher to discretize the design domain using 30,000
polygonal elements and impose symmetry to the space
of admissible density fields via a projection approach
(Giraldo-Londoño and Paulino 2021b). Figure 11 displays
several optimized designs that we obtain for various values
of the angular frequency, . As shown by these results, it is
clear that the optimizer renders designs with a large amount
of holes distributed between the inner and the outer circle of
the bracket and four slender members connecting the opti-
mized bracket to the support. The presence of the holes can
be explained from the von Mises stress envelopes, which
show low stress values close to the regions where the holes
are located.

Figure 12 shows the von Mises stress maps at various
instances in time for each of the designs displayed in Fig. 10.
The results show that the elements at the outer and inner
part of the circular region as well as the slender elements
connecting to the support are, in general, highly stressed
during most of load duration, which suggests that the stress
limit is reached at almost all time steps. To verify this
hypothesis, we plot the dynamic response of the bracket as
a function of time, as shown in Fig. 13. The figure displays

Fig. 11 Pillow bracket
topologies (top) and von Mises
stress envelopes (bottom)
obtained for various angular
frequencies: (a) 5 rad/s,
(b) 50 rad/s, (c)

100 rad/s, and (d)
200 rad/s. The values of

correspond to the optimized
volume fractions, z , for
each design
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Fig. 12 Snapshots displaying
the evolution of the von Mises
stress maps for the designs
shown in Fig. 11

Fig. 13 Dynamic response of
the pillow bracket designs of
Fig. 11: (a) 5 rad/s,
(b) 50 rad/s, (c)

100 rad/s, and (d)
200 rad/s. The figures on

the left display the time history
of vertical displacement at the
lowermost point of the inner
circle of the bracket and those
on the right display the time
history of minimum and
maximum von Mises stresses for
each of the optimized designs
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both the vertical displacements at the lowermost node of
the inner circular region of the bracket and the history of
maximum and minimum von Mises stress, and as clearly
seen, the stress limit for this example is reached at almost
every time step.

7.4Wheel design under rotating loads

The final example aims to design a wheel subjected to
normal and shear tractions that rotate at a prescribed angular
velocity, 50 rad/s, to simulate the contact forces
exerted by the ground to the wheel while it moves at a
constant speed. The geometry of the wheel and the applied
loads are shown in Fig. 14. The loading setup is meant
to approximate the contact forces on the wheel yet, for
simplicity, we neglect the inertial forces (design-dependent
loads) that would act on a rotating wheel. The magnitude of
the loads and additional input parameters needed to solve
this example are provided in Table 5.

We obtain several optimized designs considering pattern
repetition on a discretized domain meshed with 30,000
polygonal finite elements. We consider pattern repetition
because it allows obtaining several optimized designs from
which we can choose. We enforce the pattern repetition
through the filter operator, P, as discussed by Talischi et al.
(2012b) and by Giraldo-Londoño and Paulino (2021b). The
optimized topologies and von Mises stress envelopes for
different number of pattern repetitions, , are shown in
Fig. 15. The results show that, independently of the number
of pattern repetitions, the stress constraints are satisfied
at all points for the entire load duration. One peculiar

Fig. 14 Wheel domain and boundary conditions. The wheel is
subjected to normal and shear tractions that are meant to represent the
contact forces exerted by the ground on a wheel moving at a constant
speed. The normal traction is of magnitude and distributed
non-uniformly according to a sine function. The shear traction is of
magnitude , where 0.5 is a friction coefficient, and it is
also distributed non-uniformly according to a sine function. To prevent
excessive dynamic amplification effects, we ramp both loads linearly
from 0 at 0 to their full magnitude at 2

Table 5 Input parameters for the wheel

Outer radius, 0 0.225 m

Thickness, 0 0.02 m

Normal load, 12 104 N

Shear load, 6 104 N

Contact angle, 0 15

Young’s modulus of solid material, 0 70 GPa

Poisson’s ratio of solid material, 0 0.3

Mass density of solid material, 0 2700 kg/m3

Stress limit, lim 550 MPa

Simulation time, max 0.08 s

Number of time steps, 60

Rayleigh damping parameters, and 0.5 1 10 6

Filter radius and filter exponent, and 1.2 10 2 m and 3

characteristic of all these designs is the highly redundant
topology observed close to the rim of the wheel, which
distribute the stresses around the wheel more uniformly
and transmit the loads to the spokes, which then transmit
the loads to the support (i.e., the axle). The redundancy
observed in these designs is likely produced by the dynamic
loads that change in position, thus resembling a many-load-
case design scenario.

Although all designs from Fig. 15 satisfy the stress
constraints locally, their dynamic performance could be
different depending on the number of pattern repetitions,

. To verify this hypothesis, Fig. 16 displays the dynamic
response (both displacements and stresses) for each of the
designs as a function of time. Figures 16a–d (left) show the
time history of vertical displacements at a point on the rim
of the wheel at an angle of 0 measured from the horizontal
line and Figs. 16a–d (right) shows the time history of
maximum and minimum von Mises stress for elements
with density greater than 0.5. As shown by the results,
the displacements tend to become smaller as increases,
which indicates that the designs become stiffer for larger
values of . The results also show that, depending on
the design, the stress limit is reached at a few peak points
or at almost all points during the duration of the dynamic
load. Based on these observations, we conclude that better
designs can be achieved when a large number of repeated
patterns are used (e.g., 8 for the results shown
here) because the wheel tends to deform less and all stress
constraints are satisfied.

8 Concluding remarks

We have introduced an AL-based formulation for topology
optimization with local stress constraints of structures
subjected to general dynamic loading. Given that the AL
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Fig. 15 Optimized topologies
(top) and von Mises stress
envelopes (bottom) of the wheel
considering different numbers of
pattern repetitions, . The
values of correspond to the
optimized volume fractions,

z , for each design

Fig. 16 Dynamic response of
the wheel designs of Fig. 15: (a)

3, (b) 4, (c)
5, and (d) 8. The

figures on the left display the
time history of vertical
displacement at outermost point
of the wheel located at and angle

0 from the horizontal line,
and those on the right display
the time history of minimum and
maximum von Mises stresses for
each of the optimized designs



O. Giraldo-Londoño et al.

method solves the original problem with local constraints
as a sequence of optimization sub-problems, the approach
adopted in this study naturally leads to designs that satisfy
stress constraints locally at all time steps. We enable the
method to solve problems with a large number of constraints
by normalizing the penalty term of the AL function (i.e.,
the term containing all constraints) by the total number of
constraints, , in which is the number of elements
in the FE mesh and is the number of time steps of the
dynamic analysis. We use this method to solve a variety
of dynamic, stress-constrained problems with various mesh
sizes without modifying the initial parameters of the AL
function (i.e., the initial Lagrange multiplier estimators, 1

and the initial quadratic penalty terms, 1 ).
To solve the AL sub-problems efficiently, we employ

gradient-based algorithms and compute the sensitivities
of the AL function using the discretize-then-differentiate
adjoint variable method, in which the adjoint problem is de-
fined based on the discretized optimization statement (both
in space and time). Since the discretize-then-differentiate
approach is tied up to a specific time integrator, we solve
the dynamic analysis problem using the HHT- method,
which is a generalization of the Newmark- method and can
simplify to other classical time integration schemes given an
appropriate choice of numerical parameters.

We solve several design problems to demonstrate the
capabilities of the AL-based approach to solve problems
with various geometries and loading conditions. As
the results demonstrate, the approach employed in this
study renders optimized designs that satisfy the stress
constraints, within the prescribed tolerance, at every
time step. To the authors’ knowledge, this is the first
study in the literature that satisfactorily solves stress-
constrained topology optimization problems for general
dynamic loading.

Appendix A: AL-tailoredMMA version

We update the design variables using a version of the
method of moving asymptotes (MMA) (Svanberg 1987)
especially designed to solve AL optimization problems. We
use this simplification because each AL sub-problem is an
unconstrained optimization problem. At each AL step, , we
approximate the AL sub-problem (16) with the following
minimization problem:

min
z 0 1

z
1

s.t: 1 (45)

where and are the lower and upper asymptotes,
respectively, and

z
1

(46)

2 max 0

(47)

and

2 min 0 .

(48)

Moreover, max and min
are the lower and upper bounds for each MMA sub-
problem, respectively, in which 0.9 0.1

and 0.9 0.1 , and and are obtained as
max 0 move and min 1 move ,

where move is a prescribed move limit (Svanberg 1987).
Additional details including the definition of , , can
be found in Giraldo-Londoño and Paulino (2021b).

The MMA sub-problem (45) can be solved analytically
and its solution is given by

max min (49)

where

. (50)

The interested reader is referred to Giraldo-Londoño and
Paulino (2021b) for the numerical implementation of the
AL-tailored MMA design variable update scheme.

Appendix B: Convergence plots for selected
problems

Figure 17 presents the convergence plots for both volume
fraction, z , and maximum von Mises stress, max ,
for some of the results reported in Section 7.
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Fig. 17 Convergence plots for
representative problems: (a)
L-bracket design with

150 rad/s, (b) corbel
design for the case when 1
and 2 are out of phase and

500 rad/s, (c) pillow
bracket design with 200
rad/s, and (d) wheel design with

4 pattern repetitions

Appendix C: Nomenclature

Number of elements in the finite
element mesh
Number of time steps

max Maximum simulation time

0 RAMP penalization parameter
Filter radius
Nonlinear filter exponent

z u0 u Augmented Lagrangian function at
the -th sub-problem

z Volume fraction of the structure
z u Stress constraint of element at

time step
z u Equality constraint for element

at time step used for the AL
method with inequality constraints

0 Young’s modulus of solid material
, , Parameters used in the HHT-

method
Parameter used to define the update

of the penalty factors
Parameter used to update the penalty

factor, , of element at time
step

max Maximum quadratic penalty factor
von Mises stress at the centroid of
element at time step
Relaxed von Mises stress at the
centroid of element at time step

lim Material stress limit in uniaxial tension
Parameter used to control the aggressive-
ness of the threshold projection function
Threshold density value used in the
threshold projection function
Time increment
Ersatz stiffness parameter

and Rayleigh damping parameters

Lagrange multiplier estimator of element
at time step for the -th AL

sub-problem

Quadratic penalty factor of element at
time step for the -th AL sub-problem

0 Poisson’s ratio of solid material

0 Mass density of solid material
V0 von Mises matrix for plane stress
D0 Material moduli matrix of solid material
B Strain displacement matrix at the

centroid of element
z Vector of design variables
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y Pz Vector of filtered densities
V y Vector of element volume fractions
E y Vector of element stiffness parameters
K Global stiffness matrix
k Stiffness matrix of element
M Global mass matrix
C Global damping matrix
m Mass matrix of element
u Global displacement vector at time

step
u Displacement vector of element at

time step
f Global load vector at time step
P Filter matrix
A 1 Vector of element areas (2D) or element

volumes (3D)
, , Adjoint vectors at time step used in

the discretized-then-differentiate adjoint
variable method
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