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Abstract
This paper presents a consistent topology optimization formulation for mass minimization with local stress constraints by
means of the augmented Lagrangian method. To solve problems with a large number of constraints in an effective way,
we modify both the penalty and objective function terms of the augmented Lagrangian function. The modification of the
penalty term leads to consistent solutions under mesh refinement and that of the objective function term drives the mass
minimization towards black and white solutions. In addition, we introduce a piecewise vanishing constraint, which leads
to results that outperform those obtained using relaxed stress constraints. Although maintaining the local nature of stress
requires a large number of stress constraints, the formulation presented here requires only one adjoint vector, which results
in an efficient sensitivity evaluation. Several 2D and 3D topology optimization problems, each with a large number of local
stress constraints, are provided.

Keywords Consistent topology optimization · Augmented Lagrangian · Stress constraints · Stress relaxation · von Mises
stress · Aggregation-free

1 Introduction

Cauchy was a visionary mathematician, physicist, and engi-
neer who made pioneering contributions to several fields of
knowledge, including continuum mechanics and elasticity
(Bell 1986). Inspired by his work on continuum mechanics,
we introduce a consistent stress-constrained topology optimi-
zation formulation that treats stress as a local quantity
both in the solution of the boundary value problem and
in the optimization phase. By treating stresses locally, we
follow its definition as a fundamental quantity obtained by
means of a limiting process known as Cauchy’s tetrahedron
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argument (Cauchy 1827; Love 1892; Timoshenko and
Goodier 1951; Malvern 1969; Gurtin 1981). The argument
states that the stress vector acting on a small area da oriented
perpendicular to its normal vector n and located at a point in
a continuous medium depends on the infinitesimal internal
force vector df(n) acting on that surface, and it is defined as
(Cauchy 1827):

σ · n = lim
�a→0

�f(n)

�a
, (1)

where σ is the stress tensor. In this paper, we treat stress
consistently, i.e., as a local quantity.

The solution of a consistent topology optimization
problem with local stress constraints comes with its own set
of challenges. First, as stress is a local quantity that must
be satisfied pointwise, one needs to impose a large number
of constraints, leading to a prohibitive computational cost.
Second, as the optimal solution of a stress-constrained
problem generally lies on a degenerated region with
dimension smaller than that of the design space, one needs
a gradient-based optimization technique able to reach inside
those regions. The formulation presented here attempts to
address these challenges, such that we can efficiently find
optimized structures that meet material strength limits at all
evaluation points under consideration.
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In order to solve the consistent topology optimization prob-
lem with local stress constraints, we employ an augmented
Lagrangian (AL) approach, which yields designs that do not
violate the stress limit at any evaluation point of the dis-
cretized domain. While preserving the local nature of stress,
we solve the consistent topology optimization problem effi-
ciently using gradient-based optimization algorithms. The
efficiency results from the sensitivity evaluation, which
requires the computation of only one adjoint vector (i.e.,
one additional linear solution) at each optimization step. To
reach inside the degenerated region of the design space in
which the optimal solution generally lies, we use a varia-
tion of the traditional vanishing constraint (Cheng and Jiang
1992), which we define as a piecewise vanishing constraint.
The new constraint definition leads to feasible solutions and
is proven to work well within our AL-based framework.

The remainder of this paper is organized as follows.
Section 2 extends the motivation for this work and
discusses several studies in stress-constrained topology
optimization. Section 3 details relevant issues regarding
the problem of singular optima and their implications in
stress-constrained topology optimization. We discuss some
theoretical considerations of the AL method in Section 4
and present our AL-based consistent topology optimization
framework in Section 5. The sensitivity analysis is presented
in detail in Section 6. Implementation details of our
AL-based formulation are provided in Section 7. Then,
we present several 2D and 3D examples in Section 8,
followed by an analysis of the computational efficiency of
the formulation in Section 9. We conclude the paper in
Section 10 with some remarks and our own perspective
on the stress constraint problem. Afterward, we provide
several appendices. Appendix A provides details of the
AL method to handle inequality constraints. Appendix
B provides a comparison between the apparent “local”
von Mises stress (Duysinx and Bendsøe 1998a) and the
stress measure adopted in this study. In Appendix C, the
optimization results obtained using our stress constraint
definition are compared against those obtained using the ε-
relaxed constraint by Cheng and Guo (1997). Appendices
D and E address the modifications introduced to the
AL function in the optimization results for an L-bracket.
Appendices F and G present additional numerical results
related to the effect of restarting the parameters of the
AL function as well as the effects of varying the stress
limit of the solid material, respectively. Finally, Appendix H
contains the nomenclature used in the present study.

2 Related work

The overall goal of topology optimization is to find a material
distribution in a given design domain such that an objective

function is minimized (Bendsøe 1995). Since the pioneering
work by Bendsøe and Kikuchi (1988), most developments
in topology optimization have concentrated on compli-
ance minimization problems, which aim to find the stiffest
structure for a given volume constraint. Because no lim-
its on material strength are imposed, structures designed
for minimum compliance do not necessarily withstand the
applied loads, thus making some of these designs unfeasible
for practical applications involving strength-related consid-
erations. Therefore, from a structural integrity standpoint, a
more appropriate topology optimization formulation should
aim to find the lightest structure that resists the applied loads
without exceeding the material strength.

To guarantee that the loads do not exceed the material
strength, the formulation must consider stress constraints.
However, stress is local by nature, which in the context
of topology optimization, implies that a large number of
stress evaluation points, and consequently a large number of
stress constraints, are necessary to guarantee the structural
integrity of the final design. Due to the large number
of stress constraints, topology optimization problems
with local stress constraints demand high computational
resources both for the sensitivity evaluation and for the
optimization problem, which makes the direct problem
intractable (Duysinx and Bendsøe 1998a).

To reduce the computational cost, most researchers have
used aggregation techniques to transform the local stress
constraints into a single global constraint (e.g., see Yang
and Chen 1996; Duysinx and Sigmund 1998b; Lee et al.
2012; Xia et al. 2012; Lian et al. 2017; Sharma and Maute
2018). The main idea of these techniques is to construct
one global stress measure that approximates the maximum
stress in the design domain. Because the maximum function
is not differentiable, and thus, not suitable for gradient-
based optimization algorithms, smooth approximations of
the maximum function have been used instead. Among
the most popular functions used in this context are
the Kreisselmeier–Steinhauser (KS) (Kreisselmeier and
Steinhauser 1979) and the p-norm (Park 1995) functions.
Yang and Chen (1996) used these two aggregation functions
to design structures subjected to stress constraints and
found that the aggregation functions may become unstable
when the numerical parameter p is large. Duysinx and
Sigmund (1998b) tested two global stress measures, one
based on the p-norm function and the other on the p-
mean function. Both aggregation functions were used in
conjunction with a relaxation technique to solve stress-
constrained topology optimization problems. Their study
confirmed that, although p should be taken as large as
possible, the optimization problem becomes ill-conditioned
and unstable as p increases.

The use of a global stress measure reduces the
computational cost at the price of losing control over the
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local behavior of stress (Duysinx and Sigmund 1998b;
Le et al. 2010). The ability of aggregation functions to
represent the local stress constraints depends on the number
of constraints, and it can rapidly deteriorate as this number
increases. To circumvent this issue, some researchers have
used clustering techniques, in which the design domain is
first divided in several sub-regions, each called a cluster, and
then an aggregation function (e.g., the p-norm) is used to
approximate the maximum stress value in each cluster (e.g.,
see Le et al. 2010; Holmberg et al. 2013; Paris et al. 2010).
However, this strategy raises a couple of questions:

1. How many clusters should be used?
2. How should the clusters be defined? (i.e., how many

elements should be included in each cluster and what
type of clustering function should be used?).

The resulting topologies obtained using the aforemen-
tioned clustering techniques strongly depend on the number
of clusters and on the way the clusters are defined. Although
it is expected that increasing the number of clusters leads
to increasing control over the local stress, there is no clear
relation between the number of clusters and the quality of
the optimized results (Le et al. 2010).

In addition to aggregation techniques, active set methods
have been used to reduce the computational cost of
topology optimization problems with local stress constraints
(Duysinx and Bendsøe 1998a, b; Guo et al. 2011; Bruggi
and Duysinx 2012). In the active set method, only active
stress constraints, i.e., constraints that are violated or close
to being so, are considered in the sensitivity evaluation, thus
reducing the computational cost considerably. However,
this method may not be suitable for large-scale topology
optimization problems with local stress constraints because,
as the mesh is refined, the number of active constraints
increases, and as the optimization progresses, the number of
elements reaching the stress limit increases.

A different method that has been used to reduce the com-
putational cost of stress constraint topology optimization
problems is based on the concept of topological deriva-
tives (Amstutz and Novotny 2010). In this approach, the
local stress constraints are used to define a class of von
Mises stress penalty functional, whose topological deriva-
tive is employed as the descent direction in a topology
optimization algorithm.

An attractive approach to efficiently solve topology
optimization problems with local stress constraints is the AL
method (Bertsekas 1996, 1999). This method directly deals
with local stress constraints by adding them to the objective
function in the form of a penalty term that is updated at each
optimization step. As a result, the sensitivity information
in AL-based methods can be computed efficiently via the
adjoint method. The sensitivity analysis can be conducted

efficiently because, independently of the number of stress
constraints, one only needs to compute a single adjoint
vector at every optimization step. Pereira et al. (2004)
used the AL method in the context of density-based
topology optimization using relaxed local stress constraints
(Cheng and Guo 1997). Although promising, the strategy
by Pereira et al. (2004) appears to have difficulties finding
0/1 solutions at the end of the optimization steps. The
AL method was also used by Emmendoerfer and Fancello
(2014, 2016) and by James et al. (2012) in the context of
the level-set method. In the approach by Emmendoerfer
and Fancello (2014, 2016), the AL method is used to
treat the von Mises stresses as local quantities, and in the
approach by James et al. (2012), the AL method is used
to enforce volume constraints, while the local von Mises
stress values are aggregated using a p-norm aggregation
function. The approach by Emmendoerfer and Fancello
(2014, 2016) produces structures with clear boundaries that
satisfy the stress constraints locally, but the algorithmic
parameters required for the evolution of the level set may
change from one problem to another, which undermines
the robustness of their approach. Moreover, da Silva et al.
(2019) used the AL method for stress-constrained topology
optimization considering manufacturing uncertainties via
eroded, intermediate, and dilated projections (Sigmund
2009).

In addition to the locality of stress constraints, another
challenge in stress-constrained topology optimization prob-
lems that has received a lot of attention is related to the
phenomenon of singular optima. This phenomenon was
first reported by Sved and Ginos (1968) when dealing with
stress-constrained truss optimization. In their paper, Sved
and Ginos (1968) studied a three-bar truss subjected to
stress constraints, and found that the global optimum could
only be obtained if one of the bars was removed from the
topology. This implies that the solution lies at a singular
point in the design space (i.e., in a degenerated region with
a smaller dimension than that of the solution space), and
thus, these optima points do not satisfy standard constraint
qualification (Achtziger and Kanzow 2008). Achtziger and
Kanzow (2008) classified this type of optimization prob-
lem as a mathematical program with vanishing constraints
(MPVCs), and proposed a modified constraint qualification
that holds under certain assumptions. Hoheisel and Kan-
zow (2008) elaborated on Achtziger and Kanzow’s work
and proposed several tailored versions of standard constraint
qualification for MPVCs. The phenomenon of singular
optima was extensively studied by other researchers (Kirsch
and Taye 1986, 1989, 1990; Cheng and Jiang 1992). A thor-
ough historical review on the subject can be found in a study
by Rozvany (2001).

The issue of singular optima has been alleviated by
means of relaxation techniques such as the ε-relaxation
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(Cheng and Guo 1997). This relaxation technique was
developed in the context of truss optimization, such that
the singular optima were removed by allowing higher
stresses in elements of smaller area. Duysinx and Sigmund
(1998b) modified the ε-relaxed constraint by Cheng and
Guo (1997) for use in the context of density-based topology
optimization. As an alternative methodology to the ε-
relaxation approach, Bruggi (2008) proposed the so-called
qp-relaxation technique. In the qp-relaxation, a suitable
penalty exponent is used to interpolate the stress limit,
in a similar way as stiffness is interpolated in the SIMP
method (Bendsoe and Sigmund 1989, 1999). Bruggi (2008)
showed that the qp-relaxation is similar to an adaptive ε-
relaxation, in which ε is a function of the element density.
Achtziger et al. (2013) proposed a smooth-regularization
approach that, in some way, resembles existing relaxation
techniques in the sense that it is controlled by a numerical
factor, t , such that as t tends to zero the original problem is
obtained. Achtziger et al. (2013) proved that this version of
the problem satisfies standard constraint qualification and
also provides a study on the effects of t on the optima points
of the problem. The issue of singular optima as well as
relaxation techniques are a key aspect in the development of
the current optimization framework, and thus, we provide a
more detailed explanation in the next section.

As a natural way to handle both the locality and the
singular optima problems, Verbart et al. (2016) proposed
a damage-like approach for stress-constrained topology
optimization. In their formulation, any material point in
which the stress limit has been exceeded is considered as
damaged, and consequently contributes less to the overall
stiffness of the structure. With stiffness as a performance
measure, their method indirectly favors designs with the
least amount of material damaged due to stress violation.
Although efficient, the method by Verbart et al. (2016) may
lead to structures that violate the stress limit.

Most of the methods discussed so far have numerical
parameters, which tend to be both problem- and mesh-
dependent. Therefore, each new problem requires an
empirical adjustment step, which is undesirable for practical
purposes. In order to reduce the number of parameters
to be calibrated, Verbart et al. (2017) presented an
approach that aims to unify aggregation and relaxation
techniques. They showed that using a lower bound
aggregation function also relaxes the feasible domain,
removing the need for relaxation in stress-constrained
topology optimization. However, as in traditional constraint
aggregation approaches, the choice of the aggregation
parameter is both problem- and mesh-dependent.

Overall, stress-constrained topology optimization is still
an open problem that lacks an efficient and robust

methodology that is suitable to solve large-scale problems
considering local stress constraints. We propose an AL-
based formulation that treats stresses as local quantities,
leading to designs that do not exceed stress limits anywhere
in the design domain. With two new parameters that are
used to adapt the traditional AL function, the formulation
introduced in this study is stable for various mesh sizes
and can efficiently handle problems with a considerably
large number of stress constraints. These two modifications
are defined in terms of a default set of parameters (which
need not be modified from one problem to another) and
are used to solve various topology optimization problems
whose number of stress constraints ranges between a few
thousands to over one million. The method is shown
to be robust by providing consistent solutions to stress-
constrained topology optimization problems in both 2D and
3D.

3 A brief discussion on singular optima

This section elaborates on the singularity phenomenon
discussed previously. To this purpose, we introduce a simple
mass minimization problem in the context of density-based
topology optimization, which is analogous to the three-bar
truss problem studied by Kirsch (1990). This new problem,
which has not been discussed elsewhere, demonstrates the
singularity phenomenon in the context of density-based
topology optimization. Particularly, this problem shows that
solutions of density-based topology optimization problems
with stress constraints may lie in degenerated regions that
are disconnected from the rest of the solution space. Finally,
we discuss some of the relaxation strategies that have
been used to alleviate the problems associated with the
singularity phenomenon.

3.1 Diagonal square problem

In this section, we suggest a simple example, which we have
named the diagonal square problem, to study the singularity
phenomenon in the context of density-based optimization.
This new example resembles the benchmark three-bar
truss problem (Kirsch 1990; Rozvany and Birker 1994;
Cheng and Guo 1997), which introduces the singularity
phenomenon in the context of ground structures. Figure 1a
illustrates the geometry, boundary conditions, and loading
for the suggested example. The model consists of a square
of side L = 2 (consistent units are used) that is discretized
using a 2×2 mesh. Two of the elements have a fixed density
equal to 1, and the other two have densities controlled by ρ1
and ρ2 (the design variables). The objective is to minimize
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(a) (b)

Fig. 1 Diagonal square problem: a geometry, boundary conditions, and loading; and b feasible design space. Notice that the global optima are
located in degenerate regions that are disconnected from the remainder of the feasible region

the volume subjected to constraints on the von Mises stress.
The optimization statement is formulated as follows:

min
(ρ1,ρ2)

m(ρ1, ρ2) = ρ1 + ρ2

s.t. g1 = σ v
1

σlim
− 1 ≤ 0, ρ1 > 0

g2 = σ v
2

σlim
− 1 ≤ 0, ρ2 > 0

0 ≤ ρi ≤ 1, i = 1, 2
with: K(ρ1, ρ2)u = f,

(2)

where σ v
1 and σ v

2 are the apparent “local” von Mises stresses
of the elements associated with design variables ρ1 and
ρ2, respectively (Duysinx and Bendsoe 1998a, b), and are
evaluated at the centroid of each element. The stress limit
σlim = 1 is the maximum von Mises stress for the solid
material. The stiffness matrix, K, is obtained through a
typical assembly process, such that the element stiffness
matrices are obtained as ke = [ε+(1−ε)ρ

p
e ]k0, in which k0

is the stiffness matrix for solid material, p = 3 is the SIMP
exponent, and ε = 1 × 10−6 is the Ersatz stiffness. The
Young’s modulus and Poisson’s ratio for the solid material
are E0 = 1 and ν = 0.3, respectively. The applied load is
P = [0.1, − 0.1]T , such that the value of P in Fig. 1a is
P = ‖P‖ = √

2/10.
The objective function and the feasible design space

are depicted in Fig. 1b. The solution space of the
current problem contains degenerated feasible regions with
dimension smaller than that of the design space. The
degenerated regions of the current problem are disconnected
from the rest of the feasible design domain, which imposes
additional challenges to the numerical solution of the
optimization statement (2). To obtain the degenerated
regions of the feasible design space, one must recall that

stress constraints g1 and g2, given in (2), are only valid if
ρ1 > 0 and ρ2 > 0, respectively. Consequently, if ρ1 = 0,
constraint g1 has no meaning and if ρ2 = 0, constraint g2
has no meaning, leading to the degenerated regions on the
ρ2 and ρ1 axes of Fig. 1b, respectively.

3.2 On strategies for finding singular optima

Obtaining the global optima for the type of problems
discussed previously is challenging due to degenerated
regions of the feasible design space (e.g., see Fig. 1b). In
order to obtain the global optima for the three-bar truss
problem, Cheng and Jiang (1992) proposed to replace the
stress constraints with internal force constraints. Although
internal force constraints are not consistent with density-
based stress-constrained topology optimization, an analogue
of the internal force constraint can still be used in this
context. These alternative constraints, which are referred to
as vanishing constraints,1 are written as follows:

g̃1 = ρ1g1 and g̃2 = ρ2g2. (3)

This simple modification removes the discontinuity of the
constraints when any of the densities vanish.

Although the vanishing constraints remove the discon-
tinuity of stress constraints gi when ρi = 0, the feasible
region remains unchanged (i.e., the global optimum still
belongs to a region of smaller dimension than that of the rest
of the design space). As a result, traditional gradient-based
optimization algorithms may have difficulties in finding
optimal points. To overcome this difficulty, Cheng and Guo
(1997) proposed the so-called ε-relaxation approach. This

1A variation of the vanishing constraints is used in the present study to
solve stress-constrained topology optimization problems.
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approach was proposed for truss optimization, such that the
stress constraints are written as internal force constraints
that are set to be smaller than a small positive quantity, ε,
which controls the extent of the relaxation. The ε-relaxed
approach has also been used to solve density-based stress-
constrained topology optimization problems, in which the
constraint takes the form:

gε(ρ) = σ v

σlim
− 1 − ε

ρ
≤ 0, (4)

where σ v is the apparent “local” von Mises stress (Duysinx
and Bendsoe 1998a, b), computed using the elasticity matrix
of the solid material (i.e., using the Cauchy stress tensor
computed as σ = D0ε, in which D0 is the elasticity matrix
of the solid material and ε is the infinitesimal strain tensor
expressed in Voight notation), and ρ is the density of the
element associated with constraint gε. This method relaxes
the feasible design space, increasing the dimensionality
of the degenerated regions. In addition to modifying the
stress constraints according to (4), the ε-relaxation approach
requires a modification to the variable lower bounds, such
that ρi ≥ ε2. The modification to the variable lower bound
is a condition imposed to guarantee convergence of the
ε-relaxation approach2 (Cheng and Guo 1997; Petersson
2001).

To solve stress-constrained topology optimization prob-
lems using the ε-relaxed approach, it has been suggested
to start with a relatively large value of ε until a solution
is obtained and then solve the optimization problem again
using a smaller value of ε and the previous solution as an
initial guess. The procedure is repeated until a sufficiently
small value of ε is reached. According to Cheng and Guo
(1997), the sequence of solutions for decreasing values of
ε leads to a global optimum of the stress-constrained opti-
mization problem. However, Stolpe and Svanberg (2001)
studied the trajectories followed by the sequence of solu-
tions and found that the sequence of solutions to the ε-
relaxed problem may not lead to a global optimum of the
original problem. In fact, they showed that the trajectories
followed by the sequence of solutions may be non-smooth
and even discontinuous.

An alternative to the ε-relaxed approach to deal with
the singularity phenomenon in stress-constrained topology
optimization is the qp-relaxation (Bruggi 2008). The idea
of the qp-relaxation is to interpolate the stress limit of the
material using the SIMP approach, with a penalty exponent
q < p, where p is the penalty exponent used to interpolate

2According to Cheng and Guo (1997), the restriction on the variable
lower bound to be ε2 is not necessary. They demonstrated that, in order
to guarantee convergence, the lower bound on the design variables has
to be a higher order term smaller than ε as ε → 0.

the stiffness of the material. This leads to stress constraints
written as

gqp(ρ) = ρp−q σ v

σlim
− 1 ≤ 0. (5)

The choice of q < p eliminates the discontinuity of the
local stresses when the density becomes zero. In the study
by Bruggi (2008), it is shown that the qp-relaxation can
be interpreted as an adaptive ε-relaxation in which ε is a
function of the density ρ. Bruggi (2008) suggested a similar
continuation scheme as that used in the ε-relaxed approach.

To illustrate the effect of the relaxation techniques on the
stress constraints, let us recall the optimization statement (2)
for the diagonal square problem. For the sake of simplicity,
we only show the effects of the relaxation using the ε-
relaxed approach because the qp-relaxation behaves in a
similar way. The original constraints, g1 and g2, and the
relaxed constraints, g

(1)
ε and g

(2)
ε (obtained using (4)), are

shown in Fig. 2 for ε = 0.3.
Because approaches such as the ε-relaxation or the qp-

relaxation relax the design space, the solution of the relaxed
problem might lead to a material distribution that is unfeasi-
ble with respect to the original constraints. That is because
satisfaction of the relaxed constraints does not imply sat-
isfaction of the original constraints—an issue that may
become severe for large-scale optimization problems. On
the other hand, if the relaxation is too moderate (e.g., if ε →
0 for the ε-relaxation technique), the optimal points might
not be reachable through standard optimization techniques.

4 Augmented Lagrangian

The AL method is a numerical technique used to
solve constrained optimization problems. This technique

Fig. 2 Relaxed constraints for the diagonal square problem. Con-
straints g

(1)
ε and g

(2)
ε correspond to the ε-relaxed constraints of g1 and

g2, respectively, using ε = 0.3
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is fundamentally different from constraint aggregation
techniques, in which, according to Ermoliev et al. (1997),
the original problem is replaced by another problem or a
sequence of problems, such that the local constraints are
replaced by a surrogate inequality. The ALmethod, which is
an improvement to the quadratic penalty method, has a well-
established mathematical background (e.g., see Bertsekas
1996, 1999; Nocedal and Wright 2006), which motivates
our choice. In the AL method, the solution of a constrained
optimization problem is achieved by solving a series of
unconstrained problems that are expected to converge to the
solution of the original constrained optimization problem.
For instance, suppose that we aim to solve the optimization
problem

min
z∈Rn

f (z)

s.t. hj (z) = 0 ∀j = 1, . . . , Nc,
(6)

where z is the vector of design variables, f (z) is the
objective function, hj (z) are the equality constraints,
and Nc is the number of constraints. The unconstrained
optimization problem that is solved at the kth step of the AL
method is as follows:

min
z∈Rn

J (k)(z) = f (z) +
Nc∑

j=1

[
λ

(k)
j hj (z) + μ(k)

2 hj (z)2
]
,

(7)

where λ
(k)
j is an estimate of the Lagrange multiplier of hj (z)

and μ(k) is a penalty coefficient similar to that used in the
quadratic penalty method. Both λ

(k)
j and μ(k) are updated

at every step k. The AL function, J (k)(z), is similar to the
Lagrangian of the constrained problem (6), but differs from
it by the terms 1

2μ
(k)hj (z)2. The presence of the terms λ

(k)
j

in the AL function reduces the possibility of ill-conditioning
associated with quadratic penalty methods (Nocedal and
Wright 2006).

The solution z(k) of the approximate sub-problem (7)
tends to converge to the solution z∗ of the original problem
(6) as k → ∞, given that the original problem satisfies
some regularity conditions (Nocedal and Wright 2006).
Particularly, Bertsekas (1996) proved that if both the
objective function and the constraints are continuous, the
original problem has an optimum, and every sub-problem
has an optimum, then the sequence of optima points of the
sub-problems converge to an optimum point of the original
problem.3 Assuming that problem (7) is well-behaved, the

3However, the stress-constrained problem is not well-behaved because,
given the degenerate nature of the constraints, the Lagrange multiplier
set associated with a stationary point is unbounded. For optimization
problems of this type, Izmailov et al. (2012) and Andreani et al. (2012)
showed that the AL method exhibits global convergence properties,
which suggests that this method is a viable alternative to solve
stress-constrained topology optimization problems.

first-order optimality condition states that

∇J (k)(z(k)) = ∇f (z(k))

+
Nc∑

j=1

[
λ

(k)
j +μ(k)hj (z(k))

]
∇hj (z(k))=0. (8)

Comparing (8) with the KKT optimality conditions for
problem (6) implies that

λ∗
j∇hj (z∗) ≈

[
λ

(k)
j + μ(k)hj (z(k))

]
∇hj (z(k)), (9)

from which we obtain the following:

λ∗
j ≈ λ

(k)
j + μ(k)hj (z(k)) or hj (z(k)) ≈ λ∗

j − λ
(k)
j

μ(k)
. (10)

Equation (10) provides a means for updating the Lagrange
multiplier estimators, λ(k)

j , at every step k, as follows:

λ
(k+1)
j = λ

(k)
j + μ(k)hj (z(k)), ∀j = 1, . . . , Nc. (11)

From the second expression of (10), it is observed
that hj (z(k)) is proportional to λ∗

j − λ
(k)
j and inversely

proportional to μ(k). Thus, a good estimation of the
Lagrange multipliers and a large value of μ(k) improve
the convergence of the AL method to a feasible solution
(i.e., hj (z) = 0). In theory, when λ(k) is a good estimate
of the actual Lagrange multiplier vector, one can obtain a
good estimate of z∗ by solving the approximate problem
(7) without requiring μ(k) to be considerably large. Unlike
penalty methods in which μ(k) → ∞ as k → ∞, the
fact that μ(k) needs not become too large in AL methods
greatly improves their conditioning (Nocedal and Wright
2006). A proper value for μ(1) needs to be chosen carefully
because a relatively high initial value for this parameter
may lead to ill-conditioning of the optimization problem
(Bertsekas 1999, p. 123). The usual recommendation found
in the literature (e.g., see Bertsekas 1996, 1999; Nocedal
and Wright 2006) is to start with a moderate value of μ(1)

and gradually increase it according to the following:

μ(k+1) = αμ(k), (12)

where α > 1 is a constant. The value of α may also be
problem dependent and may require empirical adjustment.
To solve optimization problems using the AL method, one
needs to solve the unconstrained optimization statement (7)
at each step k and update both Lagrange multipliers λ

(k)
j

and penalty term μ(k), using (11) and (12), respectively.
The procedure is repeated until some convergence criterion
is satisfied. The AL method presented here is designed for
equality constraints, and extended for inequality constraints
in Appendix A.
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5 Consistent stress-constrained topology
optimization formulation

This section presents a framework for the consistent solu-
tion of stress-constrained topology optimization problems
based on the AL method introduced previously. The opti-
mization statement that we solve in the present study is as
follows:

min
z

m(z) =
Ne∑

e=1
ρ̃eve

s.t. gj (z) ≤ 0, j = 1, . . . , Nc

0 ≤ ze ≤ 1, e = 1, . . . , Ne

with: K(z)u = f,

(13)

where m(z) is the mass (volume) of the structure, z is
the vector of design variables, ρ̃e is the volume fraction
of element e defined using a smooth Heaviside projection
(Guest et al. 2004), ρ(z) = Pz is the vector of filtered
densities, P is the filter matrix, ve is the area (for 2D
problems) or volume (for 3D problems) of element e, gj (z)
is the j th stress constraint, Nc is the number of stress
constraints, Ne is the number of elements in the finite
element mesh, and K(z)u = f is the typical linear elastic
equilibrium equation,4 which is solved using the finite
element method. The stiffness matrix is computed through
a typical assembly process as follows:

K(z) =
Ne

A
e=1

ke, with ke = [ε + (1 − ε)ρ
p
e ]k0, (14)

where ke are the element stiffness matrices, in which ε is
the Ersatz parameter, p is the SIMP penalization factor, and
k0 is the stiffness matrix for a solid element.

In this study, we have adopted the filter used by Zegard
and Paulino (2016), which we have denoted as polynomial
filter. For this type of filter, the filter matrix, P, is computed
as:

Pij = wij vj

Ne∑

k=1
wikvk

, with wij = max

[

0, 1 − ‖xi − xj‖2
r

]s

,

(15)

where r is the filter radius and ‖xi − xj‖2 represents the
distance between the centroids, xi and xj , of elements i and
j , respectively. The order of the filter is defined by the filter
exponent, s. Note that, when s = 1, the polynomial filter
reduces to the traditional linear filter (Bourdin 2001).

In a traditional mass minimization topology optimiza-
tion problem with stress constraints, the mass is usually
computed as m(z) = ∑Ne

e=1 ρe(z)ve. Several researchers

4Notice the modular structure developed for the stress-constrained
topology optimization problem. Due to this feature, different
constitutive behaviors can be incorporated in the present computational
mechanics framework.

have used different mass functions that penalize interme-
diate densities to facilitate obtaining black-and-white (0/1)
solutions (e.g., see Pereira et al. 2004; Navarrina et al. 2005;
Paris et al. 2009; Lee et al. 2012). In the present study, we
use the mass function shown in (13)1, in which the volume
fraction of element e, ρ̃e, is defined in terms of the smooth
Heaviside projection (Guest et al. 2004):

ρ̃e = 1 − e−βρe(z) + ρe(z)e−β, (16)

where β ≥ 0 is a penalization parameter.

5.1 Piecewise vanishing stress constraint

The original vanishing constraint, displayed in (3), is an
inequality constraint of the form gj ≤ 0. In order to use the
AL method, we need to use a constraint of the form hj =
0, which is computed using (42). The use of constraints
hj obtained from the traditional vanishing constraint may
lead to negative values of the penalization term in the AL
function (19), which in turn can temporarily deviate the
optimization from the optima.5 The nonlinear behavior of
the stress constraints exacerbates this phenomenon, possibly
leading to instability in the optimization algorithm. To
overcome these difficulties, we establish the piecewise
vanishing constraint, as shown below:

gj (z) =
{

ρ
p
j (σ v

j /σlim − 1)2 if σ v
j /σlim > 1

0 otherwise,
(17)

where the exponent p is the SIMP penalization factor. This
exponent factor p helps to regularize the behavior of the
constraint by correlating it with the behavior of the local
stiffness matrix as a function of the density. We denote this
constraint as the piecewise vanishing constraint and use it
in the optimization statement (13).

When compared with a vanishing constraint of the
traditional form gj (z) = ρj (σ

v
j /σlim−1), squaring the term

between parenthesis provides a more severe penalization to
stresses that are much higher than σlim and alleviates the
constraint for stresses closer to the stress limit. This allows
a smoother transition to a design with lower overall stress
during the optimization iterations, while preserving C1(z)
continuity6 —an important characteristic for gradient-based

5As an example, suppose that for a given AL step we have g = −0.5,
λ = 1, and μ = 1. For this combination of constraint values and AL
parameters, we have that, h = max(g, − λ/μ) = max(− 0.5, − 1) =
− 0.5, which yields P = λh + 1

2μh2 = − 3/8 < 0, where P is the
penalization term of the AL function.
6The piecewise constraint given by (17) is C1(z) because, for
σ v

j /σlim > 1, gj (z) = ρ
p
j (σ v

j /σlim − 1)2, which is the finite
composition of C∞ functions in this domain, and for σ v

j /σlim < 1,
gj (z) = 0, which is also C∞. Moreover, when σ v

j /σlim = 1, both the

value of ρ
p
j (σ v

j /σlim − 1)2 and its first derivative with respect to z are
equal to zero, which is the same value of gj (z) and its derivative with
respect to z, when σ v

j /σlim < 1.
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optimization. Appendix C presents numerical results that
demonstrate the superiority of the results obtained with
the piecewise vanishing constraint, as compared to those
obtained using the traditional ε-relaxed stress constraint.

5.2 Stress Measure

Based on the qp-relaxation approach by (Bruggi 2008) (see
(5)), we adopt the stress measure,

σ̃ v = ρ0.5σ v. (18)

That is, we use p − q = 0.5. The stress measure, σ̃ v, is
computed based on the apparent “local” von Mises stress
(Duysinx and Bendsøe 1998a, b), which we compute based
on the elastic properties of the solid material. Given that
we use an Ersatz stiffness approach to obtain the stiffness
matrices (e.g., see (14)), the apparent “local” von Mises
stress, σ v, stays finite as ρ → 0. Because σ v is finite, the
stress measure given by (18) approaches zero as ρ → 0. In
addition, when ρ → 1, the stress measure becomes equal to
the apparent local vonMises stress, σ v, of the solid material.
The quantity σ̃ v is used for plotting and for the evolution of
the parameter γe, as shown later. For further discussion on
the difference between the apparent “local” vonMises stress
and the stress measure, see Appendix B.

5.3 Augmented Lagrangian approach

We solve the optimization statement (13) using the
aforementioned AL method. We introduce modifications
in order to improve convergence towards a 0/1 solution
and to improve the robustness of the method under mesh
refinement or coarsening. The first modification consists
of rewriting the mass function, m(z) (see (13)1), using
weight factors γe. The second modification consists of
multiplying the penalty term of the AL function by a
scale factor η. The third modification consists of adding
an interphase penalization, F(z), to the AL function. As
we will discuss in detail later, this interphase penalization
aims to prevent small-scale features from appearing in the
optimized topologies and it is only considered when we
use continuation in the filter radius during the optimization
steps. The corresponding AL function for the kth sub-
problem reads as follows:

J (k)(z) =
Ne∑

e=1

γ (k)
e ρ̃eve

+η

Nc∑

j=1

[

λ
(k)
j gj (z)+ μ(k)

2
gj (z)2

]

+δF (z), (19)

where gj (z) is defined in (17) and δ = 1 when the
continuation in the filter radius is active, and δ = 0

otherwise. The first two modifications to the AL function
will be discussed in the following two sections and the third
modification will be discussed later.

5.4 Adaptive weight factors γe

Weight factors γe, which affect the objective function term
in (19), help push the solution of the optimization problem
towards black and white (0/1) and also help the optimizer to
overcome local optima with high volume. This modification
only affects the mass function and, as such, it is tailored
to solve the mass minimization problem with local stress
constraints given in (13). We present a heuristic argument
to determine the evolution of weight factors γe, which is
based on the effect of such factors on the AL function (19).
In general, when σ̃ v

e > σlim, the behavior of the AL (19)
tends to be dominated by the penalty term, and when σ̃ v

e <

σlim, the behavior tends to be dominated by the objective
function term. To increase the relevance of the penalty term
when σ̃ v

e > σlim, we lower the value of γe, which only
affects the volume of element e. Similarly, to increase the
relevance of the objective function term when σ̃ v

e < σlim,
we increase the value of γe for that element.

These observations suggest the use of an adaptive γe

for each element. Thus, we suggest a heuristic expression
for weight factors γe as a function of the stress measure
σ̃ v

e defined in Eq. (18). The update of parameters γe for
e = 1, . . . , Ne is given by the following:

γ (k+1)
e =

{
max(a1γ

(k)
e + b1, γL) if σ̃ v

e > σlim

min(a2γ
(k)
e + b2, γU ) otherwise,

(20)

where γL and γU are the lower and upper bounds for γe,
respectively. Parameters a1, a2, b1, and b2 are obtained
empirically, with the only requirement being that γe

decreases if σ̃ v
e > σlim and increases otherwise. If the

aforementioned requirements are met, our experience has
shown that the optimization results are relatively insensitive
to the choice of the numerical constants in (20). Figure 3
shows an example of the evolution of γ

(k)
e for successive

sub-problems, k, following the update function displayed
in (20), for a case in which the condition σ̃ v

e > σlim is
always true (blue curve) and for a case in which the converse
condition is always true (red curve). These curves are shown
for illustrative purposes only because the evolution of γ

(k)
e

is, in general, not monotonic and depends on the value of
σ̃ v

e /σlim in each sub-problem, k. As shown in the figure,
parameters γe decrease when σ̃ v

e > σlim and increase

otherwise. The weight factors, γ
(k)
e , are kept constant

for each AL step, k, and thus the AL function remains
differentiable during the solution of each sub-problem.
Appendix D investigates the effect of using parameters γe
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Fig. 3 Values of γ
(k)
e for successive values of k considering both σ̃ v

e

being above and below σlim. The values of γ
(k)
e are obtained according

to Eq. (20), with a1 = 0.7, a2 = 2.5, b1 = − 0.1, b2 = 0.5, γL = 0,
and γU = 4

in the quality of the optimization results for an L-bracket
domain for various mesh sizes.

The introduction of parameters γ
(k)
e adapts the objective

function term of the AL (19), which modifies the original
optimization statement for intermediate AL sub-problems.
However, as the optimization converges, σ̃ v

e tends to values

lower than or equal to σlim, which means that γ
(k)
e →

γU (see Fig. 3), leading to a uniform distribution of γe.
Consequently, as the optimization converges, the objective
function is basically multiplied by a constant term γU ,
and thus, the optima points of the modified optimization
problem are the same as those of the original problem.

5.5 Scale factor η

Progress toward a feasible solution using the traditional
AL method depends on the ratio between the original
objective function and the penalty term of the AL function.
The magnitude of the penalty term is highly dependent
on the number of constraints. In the context of topology
optimization with local stress constraints, the number
of constraints increases when the mesh is refined and
decreases when the mesh is coarsened. Through numerical
experimentation, we found that if the objective-to-penalty
ratio in the AL function is kept approximately constant
and independent of the number of constraints, our AL
formulation leads to consistent optimization results as the
underlying mesh is refined or coarsened. To preserve this
ratio as the mesh is refined or coarsened, we multiply the
penalty term by a scale factor η (e.g., see (19)), which is
given by the following:

η = 1/Nc, (21)

where Nc is the number of constraints. The proposed scale
factor η helped us obtain consistent optimization results
for a variety of problems solved in the present study, in
which the number of constraints ranged between a few
thousands to over one million. In Appendix E, we present
some numerical results that demonstrate the effect of having
scale factor η in the quality of the optimization results.

6 Sensitivity analysis

The stress-constrained topology optimization problem
discussed in this section is solved using gradient-based
optimization algorithms. In order to do so, sensitivity
information for the AL function (19) is required. The
sensitivity of the AL function is computed using the chain
rule as follows:

dJ (k)

dzj

=
Ne∑

i=1

∂J (k)

∂ρi

dρi

dzj

=
Ne∑

i=1

∂J (k)

∂ρi

Pij . (22)

The term Pij in (22) is obtained from the relation ρ(z) =
Pz and the term ∂J (k)/∂ρi is obtained using (19), as
follows7:

∂J (k)

∂ρi

= ∂

∂ρi

Ne∑

e=1

γeρ̃eve+η
∂

∂ρi

Nc∑

j=1

[
λjgj (z) + μ

2
gj (z)2

]
.

(23)

For simplicity in the notation, we have dropped the
superscript k in (23) and in the subsequent equations of
this section. The first part of (23), which is related to the
objective function, is computed as follows:

∂

∂ρi

Ne∑

e=1

γeρ̃eve = γi

∂ρ̃i

∂ρi

vi = γi

(
βe−βρi(z) + e−β

)
vi .

(24)

The second part of (23), which is related to the penalty term,
is computed as follows:

∂

∂ρi

Nc∑

j=1

[
λjgj (z)+ μ

2
gj (z)2

]
=

Nc∑

j=1

[
λj +μgj (z)

] ∂gj (z)
∂ρi

.

(25)

7Because the interphase penalization F(z) in (19) is only used when
we apply continuation on the filter radius, we have decided not to
include it in the current derivation.
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Using (17) and (42), the non-zero part of the sensitivity of
constraints hj is determined as follows:

∂hj (z)
∂ρi

= ∂

∂ρi

[
ρ

p
j (σ v

j /σlim − 1)2
]

= pρ
p−1
j δij (σ

v
j /σlim − 1)2

+2ρp
j

σlim
(σ v

j /σlim − 1)

(
∂σ v

j

∂u

)T
∂u
∂ρi

, (26)

where δij is the Kronecker delta operator and u is the
displacement vector obtained from the equilibrium equation
Ku = f. The last part of (26) corresponds to the
sensitivity of the von Mises stress for the j th stress
constraint. The adjoint method is used herein to avoid the
expensive computation of ∂u/∂ρi (Bendsøe and Sigmund
2003; Christensen and Klarbring 2008). Differentiating the
aforementioned equilibrium equation with respect to the
design variables, and assuming that f is independent of the
design variables, we obtain:

∂K
∂ρi

u + K
∂u
∂ρi

= 0. (27)

Substituting (26) into (25) and adding the expression in (27)
multiplied by the adjoint vector, ξ , leads to the following:

∂

∂ρi

Nc∑

j=1

[
λjgj (z) + μ

2
gj (z)2

]

=
Nc∑

j=1

[
λj + μgj (z)

]
pρ

p−1
j δij (σ

v
j /σlim − 1)2

+
Nc∑

j=1

[
λj +μgj (z)

]2ρ
p
j

σlim
(σ v

j /σlim−1)

(
∂σ v

j

∂u

)T
∂u
∂ρi

+ξT

(
∂K
∂ρi

u + K
∂u
∂ρi

)

. (28)

Collecting all terms in (28) that multiply ∂u/∂ρi and
choosing ξ such that these terms vanish from the sensitivity
evaluation allows rewriting (28) as follows:

∂

∂ρi

Nc∑

j=1

[
λjgj (z) + μ

2
gj (z)2

]

= [λi + μgi(z)]pρ
p−1
i (σ v

i /σlim − 1)2 + ξT ∂K
∂ρi

u, (29)

where ξ is the solution to the following adjoint problem:

Kξ = −
Nc∑

j=1

[
λj + μgj (z)

] 2ρ
p
j

σlim
(σ v

j /σlim − 1)
∂σ v

j

∂u
. (30)

The last term in (29) is obtained as ξT ∂K
∂ρi

u = ξT
i

∂ki

∂ρi
ui ,

where ξ i , ki , and ui refer to element-wise quantities.

Because we compute the element stiffness matrices using
(14)2, then

∂ki

∂ρi

= p(1 − ε)ρ
p−1
i k0. (31)

By substituting (24), (29), and (31) into (23), we obtain the
following:

∂J (k)

∂ρi

= γi

(
βe−βρi(z) + e−β

)
vi

+η
[
(λi + μgi(z)) pρ

p−1
i (σ v

i /σlim − 1)2

+p(1 − ε)ρ
p−1
i ξT

i k0ui

]
, (32)

which is substituted into (22) to obtain the final expression
for the sensitivity of the AL function (19), i.e.:

dJ (k)

dzj

=
Ne∑

i=1

γi

(
βe−βρi(z) + e−β

)
viPij

+η

Ne∑

i=1

[
(λi + μgi(z)) pρ

p−1
i (σ v

i /σlim − 1)2

+p(1 − ε)ρ
p−1
i ξT

i k0ui

]
Pij . (33)

Note that using the adjoint vector, ξ , obtained from
(30) greatly reduces the cost of sensitivity evaluation as
compared to evaluating (22)–(26) directly, which requires
computation of ∂u/∂ρi for i = 1, . . . , Nc.

7 Implementation details

Here, we present some implementation details for the
proposed AL-based formulation. We start by describing a
strategy that we implement for addressing the non-convexity
of the optimization problem, followed by a description of
a continuation strategy that we use for the filter radius.
We finalize by providing a pseudo-code to summarize the
AL-based formulation to solve consistent stress-constrained
topology optimization problems.

7.1 Addressing non-convexity

The nonlinear behavior of the stress constraints combined
with the disconnected regions in the solution space
illustrated by Fig. 1b causes the optimization problem
to become non-convex. Consequently, it is common for
optimization algorithms to get trapped in local optima. In
addition, the nonlinear behavior of the problem causes the
solutions to differ significantly when initial parameters of
the problem are changed and when different discretizations
of the same underlying domain are used.

A common strategy when using the AL method for non-
convex problems is to restart the values of μ and λj when
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the optimization stagnates8 (Bertsekas 1996, 1999; Nocedal
and Wright 2006). In the present study, we implement that
strategy, but we also restart the values of weight factors γe

when the optimization stagnates. Once these parameters are
restarted, we conduct additional optimization iterations until
reaching convergence.

This approach allows us to achieve better results, i.e.,
designs with lower mass ratio than that obtained when these
parameters are not restarted. For practical purposes, we
allow these parameters to be restarted up to four times for
the 2D examples and up to two times for the 3D examples.
The effect of restarting these parameters in the quality of
the optimization results is demonstrated in Appendix F for
a particular optimization problem.

7.2 Achieving stress constraint satisfaction

The piecewise vanishing constraint given in (17) has a
null gradient whenever its associated stress constraint is
satisfied. The null gradient slows down the convergence
rate when the optimization is close to an optimal point,
which prevents us from achieving strict stress constraint
satisfaction. In order improve numerical stability and enable
a strict stress constraint satisfaction, we lower the stress
limit of the constraints that are not satisfied when the
optimization is close to convergence. We lower the stress
limit, σe

lim, of each element gradually to preserve the
stability of the optimization algorithm, and this is achieved
by using the weight factors, γe, as an indicator of constraint
violation. Notice that the weight factors can be considered
as an indicator of constraint violation that changes gradually
between each AL sub-problem. Therefore, we define an
artificial stress limit as follows:

σe
lim =

(
γUσR

lim + (1 − σR
lim)γ

(k)
e − γL

γU − γL

)

σlim, (34)

in which σR
lim is the maximum reduction of the stress limit.

The factor σR
lim is successively lowered at each sub-problem,

according to the following expression:

(σR
lim)(k+1) = max(1.25(σR

lim)(k) − 0.26, 0.65). (35)

Equation (34) shows that σe
lim → σlim when the constraint

associated with element e is satisfied over successive AL

8Stagnation is reached when the average change in the design variables
between two consecutive iterations is smaller than a given tolerance,
i.e., when Change < tol (cf. Algorithm 2) and the constraints are
yet not satisfied.

sub-problems, which happens because γ
(k)
e → γU as the

solution converges. Thus, as the sub-problems converge to
an optimum point, we recover the original optimization
problem. The artificial stress limits, σe

lim, similar to the

weight factors, γ
(k)
e , are kept constant for each AL step, k,

and thus the AL function remains differentiable during the
solution of each sub-problem.

7.3 Continuation on filter radius

In order to achieve optimization results with lower
mass ratio and well-defined material boundaries (i.e., 0/1
designs), we use continuation on the filter radius during
the optimization steps. In the remainder of this paper, we
refer to such continuation strategy as filter reduction. In
this study, we propose a filter reduction scheme in which
the filter radius of element e is a function of its density.
That is, we conduct a local density-based modification of
the convolution function used for the original filter (see
(15)). Unlike the traditional filter schemes that use one filter
radius, which controls the length scale of the final designs,
the proposed filter reduction strategy allows each element to
have an individual filter radius, which yields optimization
results with well-defined material boundaries. The filter
reduction procedure used in this study is as follows:

1. A density measure of each element, ρ̄e, is obtained by
applying the initial filter to the design variables z. That
is, ρ̄ = P0z, where P0 is the initial filter matrix.

2. The filter radius of an element is then scaled using a
ratio equal to the maximum between the filtered density
and ρref = 0.7. That is, the filter radius of element e

is updated as ri+1
e = max(ρ̄e, ρref)r

i
e. A lower bound,

rmin, is used for the element filter radius in order to
prevent the appearance of checkerboards.

3. The new filter matrix is computed using the filter radius
of each element, ri+1

e .

The filter reduction is performed after the optimization
achieves a certain level of stagnation. The density measure
described in step 1 is always obtained using the original
filter, in order to retain information about the definedminimum
length scale; yet, the reduced filter radius is computed using
the previously updated filter radius to achieve a well-defined
density map. In our implementation, once the condition
Change < tol is first met, the filter radius is updated
every 10 optimization steps. The value of ρref = 0.7 in step
2 is set to achieve a gradual reduction of the filter radius and
to prevent numerical instabilities, which may occur if the
filter radius reduces too fast.

In our implementation, we stop reducing the element
filter radius when ni+1/ni > 0.9, in which ni and
ni+1 correspond to the number of non-zero entries of
filter matrices Pi and Pi+1, respectively (i.e., when two
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consecutive filter matrices, Pi and Pi+1, have similar
topology9). We use the number of non-zero entries as a
criterion of similarity because, as can be seen in (15), as
the filter reduction procedure converges, the number of
non-zero entries of filter matrices Pi and Pi+1 will be
similar. In addition, whenever the optimization parameters
are restarted, the filter radius is also restarted to its initial
value, which helps to remove unwanted small-scale features
from the optimized topologies.

The filter reduction scheme described above can be
implemented efficiently, using the previously stored filter
matrix, as shown in Algorithm 1. Although efficient, the
filter reduction procedure described herein requires storage
of the original filter matrix, P0, as well as the reduced filter
matrix, P, which can substantially increase the memory
requirements of the algorithm.

When the filter reduction scheme is used, the filter radius
of each element is reduced independently. As a result, small-
scale artifacts tend to appear in the optimized topologies. In
order to address this issue, as soon as the first filter reduction
is performed, we add the interphase penalization,

F(z) = 2

Ne

Ne∑

e=1

ρ̄e(1 − ρ̄3
e ), (36)

to the adapted AL function, by setting δ = 1 in (19).10

Notice that, if δ = 0, then this term is not present.

9When two consecutive filter matrices have similar topology, it
indicates that the material distribution between two consecutive
iterations has not changed significantly. Alternatively, we could use
a criterion based on ‖Pi+1 − Pi‖ to stop the filter reduction, but this
means storing both Pi and Pi+1, which requires a substantial amount
of RAM memory.
10The function defined in Eq. (36) is not unique, and other functions
such as ρ(1 − ρ) can be used for the same purpose. We choose the
function in Eq. (36) because its slight asymmetry with respect to
ρ = 0.5 tends to favor designs with lower weight.

The interphase penalization in (36) associates a non-
zero value to the interphasial regions of the structure and is
computed using the original filter with the original radius
defined for the length-scale control. The reason for using the
original filter to compute this penalization term is to retain
information of the original length scale. Features with a
characteristic size smaller than the original length scale will
have a higher ratio of (interphase penalization)/stiffness,
and, with that, they are more penalized, and, consequently,
disfavored by the optimizer. As a result, adding the
interphase penalization (36) to the AL function (19), when
the filter reduction scheme is used, tends to prevent small
artifacts from appearing in the optimized topologies. The
interphase penalization, F(z), is introduced in the later
stages of the optimization steps, when the problem has
stagnated. The introduction of F(z) alters the AL function,
but the optimization problem remains stable.

For implementation purposes, we normalize the inter-
phase penalization (36) with respect to its value at the
moment of the first filter reduction. That is because, depend-
ing on the problem being solved, its magnitude can dom-
inate the problem, or it can be too small to remove small
artifacts from the optimized topologies.

Whenever the optimization is restarted, the original filter
is restored and the interphase penalization is removed from
(19).When the solution starts to converge oncemore, the inter-
phase penalization is added back to the AL function (19),
and the entire optimization procedure continues.

7.4 Optimization algorithm

A pseudo-code summarizing the optimization procedure
described above is presented in Algorithm 2. The algorithm
contains three main loops. The most outer loop (line 6)
is used to restart the values of λ(k), μ(k), and γ (k) if
the optimization stagnates. The AL steps are conducted in
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the inner loop starting on line 10. The most inner loop,
which is located on line 11, is used to run a few MMA
iterations (Svanberg 1987) to approximately minimize the
AL function (19) at each AL step k (i.e., line 11 corresponds
to the solution of the kth AL sub-problem). Once the
algorithm exits the loop on line 11, the von Mises stress
distribution is obtained for each element e (line 12),
followed by an update of Lagrange multiplier estimators
λ

(k)
j and weight factors γ

(k)
e , respectively (lines 13–14). In

order to speed-up convergence, when the average step size
is lower than the tolerance (line 16), parameters μ(k), γU ,
and (σR

lim)(k) are updated to help drive the design towards
a feasible solution. If the filter reduction strategy is used,
then the filter reduction procedure described in Algorithm 1
is applied (lines 20–22). If changes in the design variables

are still significant, penalty parameter μ(k+1) remains
unchanged (line 24). Finally, if the optimization stagnates
before the stress constraints have been satisfied, the inner
loop breaks (line 26), and the algorithm goes back to
line 6, where the values of λ(k), μ(k), and γ (k) are
restarted.

8 Numerical results

This section presents numerical results obtained using a
MATLAB implementation of the proposed method. In order
to facilitate the reproduction of the results presented in
this paper, Table 1 displays the initial values for μ(k);
λ

(k)
j , j = 1, . . . , Nc; and γ

(k)
e , e = 1, . . . , Ne, as well as
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other numerical parameters considered.11 Unless otherwise
specified, the parameters in Table 1 are used in all examples.

We present several 2D and 3D examples to illustrate
some of the attributes of the present formulation. The
2D designs are useful for problems in which plane
stress assumptions are acceptable, and the 3D designs
are of interest for most engineering applications in
which a 2D model is insufficient. With the growing
interest in additive manufacturing technologies to prototype
increasingly complex structures (Wong and Hernandez
2012; Gibson et al. 2015), it is imperative to have reliable
design tools for 3D optimized structures that are able to
withstand their applied loads. Through the 3D examples, we
show that the current formulation can be conceived as a first
step in that direction.

The mathematical formulation (13) for the mass min-
imization problem with stress constraints admits a trivial
optimum solution corresponding to a structure with no mass
(i.e., ρ = 0 everywhere). However, such trivial solutions are
of no interest because they have no practical meaning. We
are interested in optimized solutions with non-zero mass. As
such, the results presented herein correspond to optimized
solutions to statement (13), which have non-zero mass. Fur-
thermore, all solutions presented hereafter satisfy the stress
constraints in every evaluation point.

8.1 Diagonal square

In this example, we use our adapted AL formulation to
solve step-by-step the diagonal square problem introduced
previously. The geometry of the diagonal square problem is
shown in Fig. 1a and the feasible design domain in Fig. 1b.
The initial parameters that we use to solve this problem are
those of Table 1, except for λ

(1)
j and μ(1), which for this

example are taken as 1 and 10, respectively.
We show some of the intermediate optimization iterations

for various AL sub-problems in Fig. 4. For the first AL sub-
problem (i.e., for k = 1), we start with (ρ1, ρ2) = (0.5, 0.6),
which we choose to break the symmetry of this particular
optimization problem around the line ρ1 = ρ2. The black
circles in Fig. 4a and in the subsequent sub-figures
correspond to the intermediate optimization iterations for
each AL sub-problem (i.e., each of the MMA iterations used
to minimize the kth AL sub-problem). The results show that
for the fourth AL sub-problem, the solution is already close
to a global optimum of the original optimization problem.
That is, our AL-based framework is able to reach inside the
degenerated regions of the feasible design space shown in
Fig. 1b.

11In addition to all parameters shown in Table 1, the MMA parameters
(Svanberg 1987) used in all examples for the minimization of the AL
sub-problems are asyinit = 0.2, asyinc = 1.2, asydec = 0.7,
move = 0.1.

8.2 2D L-bracket

This example presents the topology optimization results for
an L-bracket problem, whose geometry is depicted in Fig. 5.
As shown in Fig. 5, the L-bracket is fixed at the top and
loaded at the free end with a load, P , that is distributed
along a distance d . The material properties, geometry, and
loading conditions used in this example are adopted from a
study by Emmendoerfer and Fancello (2016), and are used
for comparison purposes only. The input parameters used to
solve this problem are shown in Table 2.

The material distributions and normalized von Mises
stress maps,12 obtained from the stress-constrained topol-
ogy optimization formulation presented in this study, are
shown in Table 3. The results are obtained for various mesh
sizes (16,384, 160,000, and 500,000 regular Q4 elements)
and regularization techniques (linear filter, polynomial fil-
ter, Heaviside projection, and filter reduction). As observed
in all the results, the topology optimization formulation
presented in Section 5 is able to remove material from
the reentrant corner and achieve designs that satisfy the
stress constraints to the desired stress limit. All results
shown in Table 3 are converged; yet, they are all mesh-
dependent, which is expected due to the non-convexity of
the optimization statement (13).

The first two columns of Table 3 correspond to the
results obtained using a linear filter and a polynomial filter,
respectively. The topologies obtained using the linear filter
quickly degenerate as the size of the mesh increases, leading
to structures that are clearly sub-optimal. In contrast, the
topologies obtained with the polynomial filter are in general
well-defined; yet, they contain thin members, especially
for the coarsest mesh. Although the results obtained using
the polynomial filter are better than those obtained using
the linear filter, we still observe some irregular members
for the polynomial filter case (e.g., see results for 160,000
constraints), especially close to the bottom left portion of
the bracket, which appears to be sub-optimal.

Another regularization technique that we investigate is
based on the Heaviside projection by Guest et al. (2004)
and used by Kiyono et al. (2016) in the context of stress-
constrained topology optimization. To obtain the results
based on the Heaviside projection, we use a continuation
strategy on parameter β, such that we start with β = 0
until the optimization iterations stagnate for the first time
and then we gradually increase β by 2 every 10 iterations
until reaching a maximum value of 30. The optimized
topologies obtained using this method are shown on the

12The stress shown in this example, as well as those shown in
subsequent examples, is the stress measure σ̃ v

e (18) normalized with
respect to the stress limit, σlim.
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Table 1 Numerical parameters
used to solve all problems in
the present study

Parameter Description Value

λ
(1)
j Initial Lagrange multipliers 300

μ(1) Initial penalization factor 5000

γ
(1)
e Initial weight factors 0.0

α Penalty factor updating parameter 1.05

p SIMP penalization 3

β Heaviside mass penalization 3

z(1) Initial guess 0.5

ε Ersatz stiffness 10−6

a1, a2, b1, b2 Weight factor update parameters 0.7, 2.5, − 0.1, 0.5

γL, γU Weight factor lower and upper limit 0, 4

tol Tolerance of the step size 0.0005

outerTol Tolerance for the restart of the AL parameters 0.2tol

maxOuterIter Maximum number of restarts 4 (2D) or 2 (3D)

third column of Table 3. As illustrated by the results, the
Heaviside projection method performs well for small mesh
sizes, leading to clear material boundaries. However, as we
increase the number of elements, we obtain large regions of
gray resulting from the instability caused by the large value
of the Heaviside penalization factor, β. Thus, as compared
to all other methods investigated in this study, the Heaviside

projection method required the largest number of iterations
to converge.

The last set of results (fourth column of Table 3) are those
obtained based on the filter reduction technique introduced
in this paper. As demonstrated by these results, the filter
reduction strategy led to the best designs (i.e., the lightest
structures with clearer material representation) among all

Fig. 4 Intermediate
optimization iterations for the
AL sub-problem, k,
corresponding to the diagonal
square problem: a k = 1; b
k = 2; c k = 3; and d k = 4
(online version in color)

1654



Topology optimization with local stress constraints: a stress aggregation-free approach

Fig. 5 Geometry and loading for the L-bracket problem

other regularization techniques that we investigated in the
present study. In addition to the results reported in Table 3,
Appendices C-G present a comprehensive analysis on the
effects of the different components of the formulation in the
quality of the optimization results. For instance, Appendix
C investigates the effects of the stress constraint definition
(i.e., the piecewise vanishing constraint) in the quality of
the optimization results, while Appendices D-E study the
effects of parameters γe and η, respectively. Appendix F
demonstrates the benefits of restarting the AL parameters in
terms of obtaining solutions of better quality (i.e., solutions
with smaller mass ratio). Finally, Appendix G provides
several numerical results for various values of the stress
limit, σlim.

8.2.1 Effect of regularization techniques

Motivated by compliance minimization problems, different
filtering techniques have been used in order to reduce

Table 2 Input parameters for the 2D L-bracket problem (Emmendoer-
fer and Fancello 2016)

Parameter Description Value

E0 Young’s modulus 1 Pa
ν Poisson’s ratio 0.3
σlim Stress limit 42 Pa
L L-bracket length 1 m
t Thickness 1 m
P Applied load 1 N
d Load distribution length 0.06 m
r Filter radius 0.015 m

checkerboarding and mesh dependence (Bourdin 2001;
Borrvall and Petersson 2001; Bendsøe and Sigmund
2003). Although these filtering techniques have also been
used in stress-constrained topology optimization problems,
their effect on this type of problems has, thus far,
not been thoroughly studied. To illustrate the potentially
adverse effect of using filters in stress-constrained topology
optimization problems, we investigate a subset of the results
displayed in Table 3.

We focus on the L-bracket results for a 500,000
element mesh obtained using our filter reduction technique
(see Table 3). Figure 6a shows both the topologies and
normalized von Mises stress maps for an intermediate
optimization step, before the filter reduction has been
applied, and Fig. 6b shows these results at the end of the
optimization iterations, when the filter reduction has been
applied. Although the topologies before and after the filter
reduction are nearly identical, the von Mises stress maps for
these two density distributions are significantly different.
We focus our attention around the highlighted regions on
the right-hand side of Fig. 6a and b, in which the difference
in von Mises stress is more prominent. Before the filter
reduction is applied (Fig. 6a), this area exhibits a spike in
the von Mises stress in a low density region. After the filter
reduction is applied (Fig. 6b), the stress concentration in
that void region is eliminated, leading to a well-defined von
Mises stress map.

The spike in von Mises stress observed in Fig. 6a may
be attributed to the diffuse interphasial regions between
solid and void that are obtained after applying the filter to
the density field. Because these diffuse interphasial regions
have intermediate density, the apparent local von Mises
stresses, σ v

e , becomes considerably large (see Appendix
B). This effect becomes more evident when dealing with
fine meshes that have many elements in the interphasial
regions, and it is primarily observed when the optimal
design has sharp angles at corners and joints, as shown in
the highlighted region of Fig. 6a.

In such cases, the use of a standard (e.g., linear) fil-
ter may prevent obtaining optimal designs with clear
material boundaries. This observation suggests that stress-
constrained topology optimization problems should be
solved using filtering techniques that minimize the transi-
tion regions between solid and void.

We considered three approaches, as shown in the last
three columns of Table 3, to reduce the interphasial regions
between solid and void that appear as a result of density
filters. Such approaches consists of using a polynomial
filter, e.g., using s > 1 in (15)2, the Heaviside projection
(Guest et al. 2004), and our proposed filter reduction
technique. However, other filtering schemes (e.g., see Wang
and Wang 2005, 2011; Sigmund 2007; Xu et al. 2010;
Talischi and Paulino 2013) that lead to a distinct boundary
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Table 3 Material distribution and relaxed von Mises stress for several regularization schemes and mesh sizes
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Fig. 6 L-bracket results with a 500,000 element mesh. The optimized
topologies (left) and normalized von Mises stress maps σ̃ v/σlim (right)
are displayed for: a an intermediate optimization iteration, before filter
reduction is used; and b the final solution, after filter reduction is applied

definition also have the potential to alleviate these spurious
stress concentrations. For the sake of simplicity, in the
remainder of this study, we combine a polynomial filter with
exponent s ≥ 1 with a filter reduction technique to mitigate
the adverse effect of the filter.

8.3 2DWrench withmultiple load cases

This example considers the design of a wrench domain
subjected to stress constraints. The domain is discretized
with PolyMesher (Talischi et al. 2012a) using 100,000
polygonal elements, and the finite element analysis routine
is adopted from PolyTop (Talischi et al. 2012b). A
description of the model geometry, loading conditions, and

Table 4 Input parameters for the wrench problem

Parameter Description Value

E0 Young’s modulus 1 Pa

ν Poisson’s ratio 0.3

σlim Stress limit 75 Pa

L Wrench length 2 m

t Thickness 1 m

P Applied load 5.0 N

r Filter radius 0.035 m

the composition of the polygonal mesh is provided in Fig. 7.
To show how multiple load cases can be handled using our
AL-based framework, we formulate the problem using two
load cases, which in turn leads to symmetric topologies.
The input parameters used to obtain the designs in the
current example are displayed in Table 4. For this example,
the geometry of the wrench is adopted from Talischi et al.
(2012b), while the remaining parameters (e.g., loading and
material parameters) are defined by the authors.

In order to handle multiple load cases, we impose Ne stress
constraints per load case (i.e., one stress evaluation point per
element and load case), which leads to Nc = mNe, where
m is the number of load cases. Because we consider two
load cases for the wrench problem, we impose Nc = 2Ne

stress constraints. To solve the stress-constrained problem,
we add all Nc constraints to the penalty term of the AL
function in Eq. (19). Adding more constraints instead of
writing the optimization statement as a multi-objective
topology optimization problem is possible because our
objective function is the mass of the structure, which has no
dependence on the number of load cases.

Figure 8 displays several optimized topologies for the
wrench problem. The results in Fig. 8a correspond to those
of the mass minimization problem with stress constraints
when no Heaviside projection is used to compute the mass
function (i.e., using β = 0 in (16)). The results in Fig. 8b
correspond to those obtained using a Heavisided density

Fig. 7 Wrench problem set-up: a model geometry, loading, boundary conditions, and polygonal finite element discretization; and b composition
of the FE mesh. The wrench domain is constructed using L = 2 m, r1 = 0.175 m, r2 = 0.3 m, R1 = 0.3 m, and R2 = 0.5 m
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Fig. 8 Optimized topologies
(left) and envelope of relaxed
von Mises stress fields (right)
for the wrench problem: a mass
minimization problem with
stress constraints without
Heaviside projection of the mass
objective function (β = 0 in
(16)); b mass minimization
problem with stress constraints
with Heaviside projection of the
mass objective function (β = 3
in (16)); c compliance
minimization problem with 49%
volume constraint. Unlike the
compliance-based solution, the
two stress-based solutions
satisfy the stress limit at every
evaluation point

field to compute the mass function (i.e., using β = 3 in
(16)). Finally, the results in Fig. 8c correspond to those
obtained from a compliance minimization formulation with
a volume constraint v̄ = 0.49, which corresponds to the
optimized volume of the wrench of Fig. 8b.

The results show that the stress-based solution obtained
for β = 0 contains large regions of intermediate densities,
while that for β = 3 leads to a black-and-white design
with clear material boundaries. This observation highlights
the importance of using a density definition that disfavors
intermediate densities during the optimization iterations.
We also note that, although both the stress-based solution
with β = 3 and the compliance-based solution have
the same volume fraction, i.e., 49%, the results from
the mass minimization problem with stress constraints
are significantly different from those for the compliance
minimization problem with a volume constraint. The stress-
constrained results drive the material away from the outer
surfaces of the wrench, and the compliance minimization
results drive the material towards the outer surfaces.
By driving the material towards the outer surfaces of
the wrench domain, the compliance minimization results
violate the stress limit at several locations, as opposed to the
stress-constrained results, which satisfy the stress limits in
every evaluation point.

We also compare the compliance values obtained for
both the stress-based solution and for the compliance-based
solution. The compliance of the stress-based solution is
2,429 N-m, and that for the compliance-based solution is
2,098 N-m. Although the compliance of the stress-based

solution is 16% higher than that of the compliance-based
solution, both are of the same order of magnitude. We
expect to obtain similar values for the compliance of both
formulations because the stress constraints limit the amount
of local deformation of the final design, thus limiting the
total compliance of the optimized solution.

Fig. 9 Geometry, loading, and boundary conditions for the 3D
L-bracket
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Fig. 10 Optimized topologies
(left) and normalized stress
maps (right) obtained for the 3D
L-bracket problem meshed with
a 265,000 elements and
b 1,728,000 elements. The
topologies shown here
correspond to the isosurface
with cutoff value 0.5

The optimized topologies for the wrench depicted in
Fig. 8 are symmetric, which is a direct result of using the
two load cases shown in Fig. 7. Although a symmetric
topology could have been enforced to the space of
admissible density fields while using only one load case
(e.g., see Talischi et al. 2012b), we considered two load
cases to show how multiple load cases can be considered
within the AL-based framework.

8.4 3D L-bracket

In this example, we present the stress-constrained topology
optimization results for a 3D L-bracket. The geometry
of the 3D L-bracket is an extrusion of the 2D geometry
from Section 8.2, as shown in Fig. 9. The applied load,
P , is distributed uniformly across the thickness. For the
results presented in this example, the geometry is discretized
using regular hexahedral elements. In addition, two different
meshes of increasing refinement are considered for the
designs. The first mesh is composed of 265,000 elements
and the second of 1,728,000 elements.

The input parameters for this example are adopted from
those used in Table 2 for the 2D L-bracket example, except
for the stress limit, σlim = 420 Pa, and the thickness,
t = 0.1 m, which were adjusted accordingly.

Figure 10 shows the optimized topologies obtained for
each of the two meshes considered in this example. As
indicated in these results, our optimization methodology
has successfully removed material from the reentrant corner
of the L-bracket, thus removing the stress singularity at
this location. The results displayed in Fig. 10 are based on
STL files obtained from the isosurface representation of the
optimized topologies.13 Also, note that we obtain similar
topologies with the two different discretizations.

The optimized topologies obtained for this example are
similar to an extrusion of the topologies obtained for the
2D L-bracket example. That is because the thickness-to-
length ratio for this problem is 1/10, i.e., it resembles a plane
stress problem. The 3D topologies obtained in this example
differ from those obtained by Sharma and Maute (2018)
using the level-set method. In contrast with our optimized
topologies, which are mainly composed of members with
rectangular cross section, their optimized topologies are
mainly composed of tubular members with approximately
circular cross sections (i.e., their optimized topologies do

13The isosurfaces as well as the STL files are obtained using the
MATLAB-based graphical tool TOPslicer (Zegard and Paulino 2016).
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Fig. 11 Geometry, loading, and boundary conditions for the 3D portal
frame

not resemble an extrusion of a 2D topology). A possible
reason to explain the difference between our results and
those by Sharma and Maute (2018) is that they use the
level-set method (favors curved boundaries) while we use
a density-based method. We also note that their problem
setting is different than the one used in this paper; while we
aim to minimize the structural mass, they aim to minimize
compliance plus a measure of the perimeter corresponding
to the material domain boundary.

8.5 3D portal frame

This example presents the stress-constrained topology
optimization results for the 3D portal frame depicted in
Fig. 11. The material properties, dimensions, and loads for
the 3D portal frame are shown in Table 5. These parameters

Table 5 Input parameters for the 3D portal frame problem

Parameter Description Value

E0 Young’s modulus 106 Pa

ν Poisson’s ratio 0.29

σlim Stress limit 1.5 × 106 Pa

L Length 0.12 m

H Height 0.06 m

h Clear height 0.035 m

b Bearing length 0.0055 m

t Thickness 0.03 m

P Applied load 120 N

d Load distribution length 0.02 m

r Filter radius 0.002 m

are adopted from a study by Le et al. (2010). Similarly to the
L-bracket, the 3D portal frame analyzed in this example has
a region of stress singularity at the reentrant corner located
on the lower portion of the portal midspan.

Figures 12 and 13 depict the optimization results
obtained for a mesh with 633,240 elements and 1,236,300
elements, respectively. These results are obtained in a
similar way as those in the previous example. As observed
from these results, our AL-based topology optimization
formulation is able to remove material from the reentrant
corner, thus preventing stress singularities and satisfying the
stress constraints at every evaluation point. Moreover, the
structures in Figs. 12 and 13 present similar geometries.

9 Assessment of computational efficiency

The stress-constrained problem is often associated with a
high computational cost. This section evaluates the effi-
ciency of the AL-based topology optimization methodology
presented in Section 5 by analyzing the computational
cost of the different examples presented in the previous
section.14 In general, the bottleneck of the implementation
is the solution of the linear systems K(z)u = f (equilib-
rium equation) and K(z)ξ = f̃ (adjoint problem) at each
optimization step. For the 2D cases, the linear systems are
solved using the Cholesky decomposition of the stiffness
matrix. The Cholesky decomposition is stored and used to
find both displacement vector u and adjoint vector ξ via
backward and forward substitution. For the 3D cases, the
resulting stiffness matrix is considerably less sparse. There-
fore, the linear systems are solved via an iterative solver
using MATLAB’s GPU implementation of the precondi-
tioned conjugated gradient with the Jacobi preconditioner.

The computational cost obtained for all examples in the
previous section are shown in Table 6. The results for the
2D L-bracket show the number of iterations required by
the filter reduction scheme is smaller than that required for
all other regularization techniques. We also observe that,
for all mesh sizes, the filter reduction technique led to the
smallest computational cost when compared to the other
regularization techniques. For the 16,380 element mesh, the
Heaviside projection method was the slowest among all the
other regularization techniques; however, for the 160,000
and 500,000 element mesh, the linear filter was the slowest,
followed by the Heaviside projection method.

14The computational costs reported in this section are based on the
topology optimization results obtained in a computer with an i7-4930k
CPU at 3.40 GHz and 64 GB of RAM and a NVIDIA GEFORCE GTX
1080 Ti GPU running on a 64-bit operating system.
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Fig. 12 Optimized topology
(top) and normalized stress map
(bottom) obtained for the 3D
portal frame problem meshed
with 633,240 elements (633,240
stress constraints). The
topologies shown here
correspond to the isosurface
with cutoff value 0.5

The computational time for the 2D wrench problem
is slightly larger than that of other problems with a
similar mesh size. That is because the wrench domain
was discretized using polygonal elements, in which the FE
model has more degrees of freedom for the same number
of design variables, and also because the wrench problem is
defined using two load cases.

We also observe a large discrepancy between the
performances of the 2D and the 3D models, which is
due to the larger and less sparse linear systems K(z)u =
f associated with 3D models. We also observed that
computational time for the coarser 3D portal frame, which
is discretized with 633,240 elements, is nearly one half

of that for the coarser 3D L-bracket, which is discretized
with 265,200 elements. This observation prompted an
investigation to identify the source of this apparent
inconsistency. To find the source of this discrepancy,
we analyzed the number of iterations required by the
preconditioned conjugate gradient (PCG) solver to solve
the linear systems, K(z)u = f, at every optimization step.
The results from this analysis showed that, on average, the
number of PCG iterations required for the 3D L-bracket
was much larger than that required for the 3D portal frame,
which considerably increases the computational cost for
the 3D L-bracket, and as a result, explains the observed
discrepancy.

Fig. 13 Optimized topology
(top) and normalized stress map
(bottom) obtained for the 3D
portal frame problem meshed
with 1,236,375 elements
(1,236,375 stress constraints).
The topologies shown here
correspond to the isosurface
with cutoff value 0.5
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Table 6 Computational cost
for the different numerical
examples

Problem Mesh Regularization Iteration† Time

2D L-bracket 16,380 Linear filter 788 3.4 min
16,380 Polynomial filter 943 4.5 min
16,380 Heaviside projection 1440 6.2 min
16,380 Filter reduction 524 2.5 min
160,000 Linear filter 2131 208.3 min
160,000 Polynomial filter 1239 65.5 min
160,000 Heaviside projection 1466 75.2 min
160,000 Filter reduction 590 36.5 min
500,000 Linear filter 1571 6.5 h
500,000 Polynomial filter 1028 3.8 h
500,000 Heaviside projection 1423 5.3 h
500,000 Filter reduction 797 3.6 h

2D wrench 100,000 Filter reduction 807 1.1 h
3D L-bracket 265,200 Filter reduction 480 12.2 h

1,728,000 Filter reduction 520 97.8 h
3D portal frame 633,240 Filter reduction 303 7.1 h

1,236,375 Filter reduction 466 34.4 h

† The iterations reported here correspond to the number of times the MMA optimizer is called and not to the
number of AL steps, k

10 Concluding remarks

This paper emphasizes on consistency between topology
optimization considering stress constraints and continuum
mechanics. Thus, we present a topology optimization
formulation for mass minimization with local stress
constraints, which is consistent with continuum mechanics
in the sense that stresses are treated locally (Cauchy 1827),
i.e., neither aggregated nor clustered.15

Specifically, we present a methodology for topology
optimization with local stress constraints based on the
augmented Lagrangian (AL) method. We introduce two
modifications to the AL function, which are tailored to solve
mass minimization problems with stress constraints. The
first modification, involving a scale factor η, is introduced
to normalize the penalization term of the AL function with
respect to the number of constraints, which leads to a
stable method as the mesh is refined or coarsened. The
second modification, involving the weight factors γe, is
introduced in order to improve convergence to a black-and-
white (0/1) solution and to overcome local optima with high
volume. The weight factors are adaptively adjusted during
the optimization process with a heuristic rule.

We introduce a modified version of the vanishing
constraint, denoted as piecewise vanishing constraint.
The modified vanishing constraint, together with the

15On the other hand, an inconsistent formulation refers to the case in
which stresses are not treated locally, i.e., they are either aggregated or
clustered.

modifications to the AL function, lead to a stable
formulation that is capable of solving a wide range of two-
and three-dimensional topology optimization problems for a
wide range of mesh sizes, without adjusting the algorithmic
parameters. We conduct extensive numerical studies that
support our rationale for the aforementioned modifications
and show that the results, obtained when the modifications
are included, are of better quality than those obtained when
they are not considered. The formulation treats stress as a
local quantity, satisfying every local stress constraint, and it
is able to do so in a computationally efficient fashion.

Another finding from this work relates to the use of
regularization techniques in stress-constrained topology
optimization problems. Our results indicate that the use
of a linear filter may hinder the optimizer from achieving
meaningful solutions because the von Mises stress fields
are highly affected by the presence of interphases of
intermediate densities between solid and void material,
particularly when the optimized structures have sharp angles
at joints and corners and when the domain is discretized
with a relatively fine mesh. As a result, stress-constrained
topology optimization problems should be solved using
techniques to minimize the intermediate densities of the
solid/void interface. We employ a continuation technique
on the filter radius that alleviates this problem and
provides clear material boundaries. We acknowledge that
other approaches can be used to mitigate this issue (e.g.,
projection schemes that decrease the amount of intermediate
densities). However, for the problems solved and the
approaches implemented in this study, the proposed filter
reduction scheme yields satisfactory results.
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Appendix A: Augmented Lagrangian
method for inequality constraints

The procedure described in Section 4 is designed to
solve optimization problems with equality constraints. For
the sake of completeness, and to provide the reader
interested in applying the AL method to problems with
inequality constraints, we present an extension of the AL
method for inequality constraints. As usual, we handle
inequality constraints by introducing slack variables sj , j =
1, . . . , Nc to the optimization problem (Nocedal and Wright
2006). Consider the following optimization problem with
inequality constraints:

min
z∈Rn

f (z)

s.t. gj (z) ≤ 0 ∀j = 1, . . . , Nc

L ≤ z ≤ U,

(37)

where L and U define the lower and upper bounds of the
design variables, respectively. Introducing slack variables,
constraints gj (z) ≤ 0 are rewritten as follows:

hj (z) = gj (z) + sj = 0, sj ≥ 0, j = 1, . . . , Nc. (38)

Consequently, the approximate sub-problem that needs to
be solved at the kth step of the AL method is as follows:

min
z, s

J (k)(z, s) = f (z) +
Nc∑

j=1

[
λ

(k)
j

(
gj (z) + sj

) + μ(k)

2

(
gj (z) + sj

)2
]

s.t. L ≤ z ≤ U
sj ≥ 0 ∀j = 1, . . . , Nc .

(39)

The minimization of J (k)(z, s) with respect to the slack
variables is obtained explicitly for any fixed z by solving the
optimization problem as follows:

min
sj

[
λ

(k)
j

(
gj (z) + sj

) + μ(k)

2

(
gj (z) + sj

)2
]

s.t. sj ≥ 0.
(40)

The optimization statement (40) is defined in terms of the
slack variable, sj , associated with constraint gj . As a result,
its solution can be found in closed form using the stationary
conditions of the Lagrangian of Eq. (40), which leads to the
following:

sj = max

[

0, −
(

λ
(k)
j

μ(k)
+ gj (z)

)]

∀j = 1, . . . , Nc. (41)

Substituting (41) into (38) leads to the following:

hj (z) = max

[

gj (z), −
λ

(k)
j

μ(k)

]

∀j = 1, . . . , Nc. (42)

Using (42), the inequality constraints gj (z) ≤ 0 of (37) can
be replaced by equality constraints, allowing the problem
to be solved using the procedure described for solving the
equality-constrained problem (6). As inferred from (42),
the slack variables do not need to be computed explicitly,
facilitating the implementation of the AL method with
inequality constraints. One must recall that the Lagrange
multiplier estimators, λ

(k)
j , and the penalty factor, μ(k),

remain constant for each AL sub-problem, and thus the
AL function is continuously differentiable (with respect to
the design variables) at each AL step. Despite the presence
of the maximum function, the AL function used with (42)
is differentiable even at the points in which gj (z) =
−λ

(k)
j /μ(k).16 If (17) is substituted into (42), it follows that

gj (z) = hj (z), which is the case in our implementation
of the AL-based method. However, if one were to use a
different stress constraint definition that can take negative
values, then (42) (in its explicit form) would be necessary in
the implementation.

Appendix B: Apparent “local” vonMises
stress vs. stress measure

Here, we clarify the difference between the apparent “local”
von Mises stress, σ v, and the stress measure, σ̃ v, described
in Section 5.2. Using a stress measure of the form σ̃ v =
ρασ v is a typical procedure in the context of stress-based
topology optimization (e.g., Bruggi and Duysinx 2012; Lee
et al. 2012), because the apparent “local” von Mises stress

16The interested reader is referred to Bertsekas (1996, p. 161) for
complete proof of the differentiability of the AL function used with
(42).
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Fig. 14 Normalized apparent
“local” von Mises stress a and
normalized stress measure b for
the 16,380 mesh solution with
linear filter of the L-bracket
example in Table 3. The stress is
only displayed for the regions
with density above 0.05.
Because both stresses are
normalized, the value of 1
represents the stress limit

is large in regions of low density. The high stresses in
regions of low density can be seen in Fig. 14a (only regions
with density above 0.05 are shown), which displays the
normalized apparent “local” von Mises stress for the 16,380
mesh solution with linear filter of the L-bracket example in
Table 3. We observe that the largest apparent local stress
occurs at the boundaries between solid and void, in which
the density is small due to the filter operator. In contrast,
Fig. 14b shows the normalized stress measure of the same
solution, in which the stress measure strictly satisfies the
stress limit of 1. By adopting σ̃ v = ρ0.5σ v, we reduce the
effect of the vaguely defined stress in the regions of low
density.

Appendix C: Comparison of the piecewise
vanishing constraint with ε-relaxation

We compare the optimization results obtained using our
piecewise vanishing constraint with those obtained using

the ε-relaxed constraint (Cheng and Guo 1997). The ε-
relaxation approach used here is the one proposed by Cheng
and Guo (1997) and Petersson (2001) in which we start with
a value of ε = 0.01, and we set the lower bound of the
design variable to ε2. The value of ε is divided by two every
time that we restart the AL parameters to gradually decrease
the value of ε reaching a final value of ε = 0.000625. We
also update the lower bound of the design variable so that it
is always equal to ε2.

Figure 15 displays the results that we obtain using
each of these constraints. As compared to the designs
obtained using the piecewise vanishing constraint, those
obtained using the ε-relaxed constraint have a significantly
larger volume and contain regions of pure solid material
(which appear sub-optimal) near the bottom left corner
of the bracket. Based on the information displayed on
Fig. 15, the results obtained using the piecewise vanishing
constraint outperform those obtained using ε-relaxation
constraint in terms of both optimized volume and quality of
results.

Fig. 15 Optimized topologies
for an L-bracket obtained using
the piecewise vanishing
constraint (top) and using the
ε-relaxed constraint (bottom)
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Fig. 16 Optimized topologies
for an L-bracket obtained when
weight factors γe are considered
(top) and when they are not
considered (bottom)

Appendix D: Effect of weight factors γe

The introduction of weight factors γe is one of the
main characteristics of the present formulation. Here, we
investigate the effects of using the weight factors in the
optimization results obtained for the L-bracket. Figure 16
presents the results that we obtain using γe, as well as,
those not using γe . We observe that, as compared to the
results obtained with γe, those obtained without γe have
a higher final volume and have fewer beam-like elements.
The factor γe helps the optimizer to overcome unfavorable
local optima by increasing the relevance of the objective
function in elements which have low stress value. If γe is
not considered, the optimizer is likely to get trapped in a

bad local optima with high volume, preventing it to achieve
structures with more slender elements, as we expect for this
benchmark problem.

Appendix E: Effect of scale factor η

The scale factor, η, is introduced to normalize the values of
the AL penalization parameters, μ(k) and λ

(k)
j , such that we

eliminate the need for adjusting the numerical values of μ(1)

and λ
(1)
j for problems with different number of constraints.

We demonstrate the effectiveness of the parameter η through
the numerical results shown in Fig. 17. These results
correspond to the optimized topologies obtained for the

Fig. 17 Optimized topologies
for an L-bracket obtained when
scale factor η is considered (top)
and when it is not considered
(bottom)
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Fig. 18 Effect of the number of AL parameter restarts on the opti-
mized topologies obtained for an L-bracket meshed with 16,380
elements: a no restart; b one restart; c two restarts; d three restarts;

and e four restarts. As the number of restarts increases, the small-
scale artifacts are removed and the optimized volume fraction becomes
smaller

L-bracket when the parameter η is either used or not. For
the case when the parameter η is not used, we re-calibrate
the values of μ(1) and λ

(1)
j for a mesh size of 16,380

elements, and these values are used to obtain the optimized
topologies for the other mesh sizes. As the mesh is refined
(i.e., as the number of constraints increases), the results
obtained when η is not used are clearly worse than those
obtained when η is used. That is because when η is not
considered, the magnitude of the penalty parameter of the
AL function (19) increases as the number of constraints
increases. Without the η parameter to normalize this effect,
the optimizer becomes trapped in local optima with higher
volume.

Appendix F: Effect of the number of AL
parameter restarts

We investigate the effect of restarting the AL parameters,
λ

(k)
j and μ(k), as well as the weight factors, γ

(k)
e , on the

final solution (cf. Section 7.1). As illustrated by Fig. 18,
restarting these parameters helps us achieve a solution with
overall lower volume. The results presented in the figure
correspond to the final solutions of the L-bracket problem
with 16,380 elements that we obtained using the filter
reduction approach for various numbers of restarts.

As shown by the results in Fig. 18, the topology obtained
with no restart contains several small-scale artifacts, which
cannot be removed without increasing the stress in the
structure. As a result, the solution gets trapped in an
unfavorable local optimum with higher volume. After the
first restart, the small-scale features disappear and the
final volume becomes smaller. If we keep restarting the
AL parameters and weight factors when the optimization
stagnates, the total volume that we are able to reach keeps
decreasing because the optimizer is able to find local optima
with lower volume.

Appendix G: Effect of stress limit σlim

We analyze the effect of the stress limit, σlim, in the
optimization results obtained for the L-bracket with 16,380
elements. The optimization results obtained using our AL-
based framework with the filter reduction scheme are
depicted in Fig. 19. The results demonstrate that increasing
the stress limit leads to designs with lower volume fraction
and more slender members, yet all these designs are
topologically similar. Amore significant change of topology
is observed when σlim ≥ 80 Pa, in which the vertical
member of the left edge of the L-bracket begins to tilt.
The results also demonstrate that the optimized volume
decreases monotonically as we increase the stress limit.
Although not shown in the figure, our numerical results
also indicate that the minimum stress limit possible for this
optimization problem is around 37 Pa. That is because the
final volume obtained from the optimization results increase
significantly as the stress limit approaches this value.

Fig. 19 Optimized volume of the L-bracket meshed with 16,380
elements as a function of the stress limit
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Appendix H: Nomenclature

α Parameter used to update penalty parameter μ(k)

λ(k) Vector of approximated Lagrange multipliers at
the kth iteration of the AL method

ξ Adjoint vector used for sensitivity evaluation
η Scale factor used in the AL function (19)

γL, γU Lower and upper bounds of weight factors γe,
respectively

γe Weight factor for element e used in the modified
AL function (19)

μ(k) Penalty parameter at the kth iteration of the AL
method

ν Poisson’s ratio of solid material
σ v

e von Mises stress at the centroid of element e
σlim Stress limit for a given material

ε Ersatz stiffness
ε Relaxation parameter in ε-relaxed approach
ρ Vector of filtered densities

ρ̃e Volume fraction of element e, defined using a
smooth Heaviside projection function

� Infinitesimal quantity
E0 Young’s modulus of solid material

J (k)(z) Augmented Lagrangian function at iteration k

Nc Number of stress constraints
Ne Number of elements in a finite element mesh

β Mass penalization parameter used in the smooth
Heaviside projection function

K Global stiffness matrix
P Filter matrix
f Global force vector

ke Element stiffness matrix
s Vector of slack variables
u Global displacement vector
z Vector of design variables

ai, bi Parameters used to define the evolution of weight
factors γe (i = 1, 2)

f Objective function
gj (z) j th stress constraint

h Equality constraint
hj (z) j th modified stress constraint used in the AL

method with inequality constraints
m(z) Mass of the structure

p Stiffness penalization parameter
q Relaxation parameter in qp-relaxed approach
r Filter radius
s Exponent of the polynomial filter

ve Volume of element e for density equal one
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