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A B S T R A C T

Unlike most cohesive zone models (CZMs), the Park–Paulino–Roesler (PPR) cohesive fracture
model has the inherent ability to control the softening shape of the traction–separation
relationships, which makes it suitable to model fracture for a wide variety of materials. Like
other CZMs, the PPR model is well-suited for problems where the crack path is known a
priori but its implementation may become complex in situations where the crack path is not
known beforehand. To overcome this limitation, we recast the PPR model within the framework
of the phase field method, which enables the modeling of crack propagation problems with
complex crack topologies using a straightforward multi-field finite element implementation. We
use constitutive functions (i.e., crack geometric function and degradation function) consistent
with the PPR model for the case of mode-I fracture, such that equivalent traction–separation
relationships from the phase-field model approximate those from the original PPR model. Our
choice of geometric and degradation functions is based upon those proposed by Wu (2017). We
present several numerical examples to demonstrate the ability of the model to capture fracture
of problems with different materials, geometries, and boundary conditions. Also, we show that
the results from our model converge to those obtained with the original PPR model for problems
where the crack path is known a priori. Being crucial in engineering design, we finally show
that the model can capture size and boundary effects with satisfactory accuracy.

. Introduction

The phase-field method has gained popularity in recent years due to its ability to model crack propagation problems with complex
rack topologies using a relatively straightforward multi-field finite element implementation. The phase-field method regularizes a
harp crack surface using a scalar auxiliary field — the phase field, which interpolates between the unbroken and the broken state
f the material. Although effective, the phase-field method has mainly been developed to model fracture of brittle materials for
hich Griffith’s description of fracture applies (Griffith, 1921). However, most materials are not perfectly brittle and display some
uctility after reaching their ultimate strength. These materials, typically referred to as quasi-brittle materials, cannot be modeled
sing Griffith’s theory, and instead require theories based on nonlinear fracture mechanics (Bažant and Oh, 1983).

One of the most popular numerical techniques used to simulate fracture of quasi-brittle materials is based on the cohesive zone
oncept (Barenblatt, 1959; Dugdale, 1960). According to this concept, as a fracture propagates, cohesive surfaces with prescribed
raction–separation laws are inserted in front of the crack tip to model the breakage of bonds as the surfaces separate. During
eparation, the cohesive tractions initially increase until reaching a maximum value (i.e., the cohesive strength) and then decrease
o zero, leading to macroscopic crack formation. Classical cohesive zone models (CZMs) found in the literature have either a linear
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Fig. 1. Overview of the proposed regularized PPR model for cohesive fracture: On the left, the two figures depict schematics of a discrete crack (top) featuring
a cohesive zone model and a regularized crack (bottom) where the phase-field variable is introduced to regularize the crack surface. In the middle section,
a rational degradation function and a quadratic geometric function (middle top) are employed to derive traction-separation relationships consistent with the
original PPR model (middle bottom). On the right, the two figures display illustrative numerical results, which are explained in detail later, showcasing the
ability of our model to capture various fracture phenomena.

or a convex (e.g., exponential) softening response (Needleman, 1987; Freed and Banks-Sills, 2008; Needleman, 1990a,b; Xu and
Needleman, 1993), whose shape cannot be modified. Several studies have shown that the softening shape of a CZM can affect the
simulated fracture behavior of a given specimen (Volokh, 2004; Alfano, 2006; Song et al., 2008), which highlights the need for a
CZM capable of controlling the shape of the softening response.

The Park–Paulino–Roesler (PPR) CZM (Park et al., 2009) is a potential-based model which can control the softening shape
of the traction–separation response. The intrinsic version of the PPR model has primarily been used to simulate delamination
problems (Park et al., 2009; Spring et al., 2016; Giraldo-Londoño et al., 2018, 2019), for which the crack path is known a priori. The
extrinsic version of the PPR model has been used for dynamic fracture simulations (e.g., see Leon et al. (2014), Spring et al. (2014)),
which requires adaptive insertion of cohesive elements as the crack propagates. Although conceptually simple, adaptive insertion
of cohesive elements requires on the fly modifications of the mesh topology, which are nontrivial. Moreover, crack propagation is
restricted to propagate along element facets, producing mesh-dependent crack paths (e.g., see Leon et al. (2014)).

To circumvent the issues raised above, the present work aims to recast the PPR model within the framework of the phase-field
method. This work is based upon the work by Wu (2017, 2018) on phase-field regularized cohesive fracture. Here, we use two
constitutive functions, the crack geometric function and the degradation function, as introduced in Wu (2017), to model the material
behavior during fracture. The parameters used to define both functions are specifically tuned to approximate the mode-I behavior
of the extrinsic PPR model for an arbitrary shape parameter. Unlike existing phase-field models, this formulation, which we call the
regularized PPR model, can reproduce traction–separation curves with concave, convex, or linear softening responses as demonstrated
in Fig. 1.

The remainder of this paper is organized as follows. In Section 2, we summarize relevant studies in the literature as it pertains
to phase-field models for brittle and cohesive fracture. Next, in Section 3, we briefly discuss the fundamentals of the phase-field
method for quasi-brittle fracture, followed by a discussion of the regularized PPR model in Section 4. We discuss the finite element
(FE) formulation in Section 5 and present several numerical examples in Section 6 to showcase the effectiveness of the proposed
approach. We finalize the paper with some concluding remarks and future research directions. Afterward, we provide an Appendix
that contains the nomenclature employed in our work.

2. Background

Many engineering materials and structures fail due to fracture propagation. For instance, concrete structures typically fail when
tensile stresses break the bond between matrix and aggregates or when microcracks and pores inside the matrix enlarge due to
loading. Understanding the mechanics of damage and failure of engineering materials is essential for assessing structural integrity
and potentially preventing catastrophic collapse of engineering structures. Two main approaches exist for the modeling of crack
2
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propagation in engineering materials: discrete crack approaches and smeared crack approaches.1 In discrete crack approaches,
discontinuities are modeled explicitly as discrete entities while in smeared crack approaches discontinuities are distributed over
a finite width (i.e., cracked surfaces are smeared out over the domain). The cohesive zone model approach (Park and Paulino,
2011) is an example of a discrete crack approach while the phase-field method (Bourdin et al., 2000; Miehe et al., 2010a,b) is an
example of a smeared crack approach.

For problems in which the location of discontinuities is known (e.g., across grain boundaries or for delamination problems),
discrete approaches such as the CZM are desirable, because one can easily create a conforming mesh in which the discontinuities
are modeled explicitly. When the location of discontinuities is unknown (e.g., as it is the case for arbitrary crack propagation in most
engineering structures), the use of CZMs typically requires cohesive elements to be inserted on the fly as the crack evolves, which
requires modifications of the mesh topology each time a cohesive element is inserted. In such cases, smeared crack approaches such
as the phase-field method are an attractive alternative.

Early developments of the phase-field method are built upon Griffith’s description of brittle fracture (Griffith, 1921). Griffith’s
theory cannot determine curvilinear crack paths, or crack kinking and branching and cannot predict crack initiation. These
limitations were later overcome by the variational formulation proposed by Francfort and Marigo (1998). In their work, Griffith’s
theory of fracture is rewritten as a minimization problem seeking to find the configuration that minimizes the total energy of the
cracking solid, yielding a formulation that can capture crack initiation and propagation in a unified way. A regularized version of
their variational formulation was later developed by Bourdin et al. (2000) and Bourdin et al. (2008), which led to the development
of the phase-field method.

Within a unified framework, the phase-field formulation by Bourdin et al. (2000) can model crack nucleation, propagation,
branching, and coalescence for either 2D or 3D problems, but it predicts identical fracture in tension or compression, producing
non-physical results for compression or shear dominated problems. A common strategy to alleviate this limitation is to decompose
the strain energy density function into a tension-dominated and a compression-dominated part and allow fracture to occur only
under tension. One of such models is that by Amor et al. (2009), in which the strain energy density is decomposed into a volumetric
and a deviatoric component by decomposing the stiffness tensor. The volumetric component is responsible for the isotropic response
of the material and prevents cracking in compression, while the deviatoric component accounts for the anisotropic behavior of the
material and allows for crack propagation in tension. Another model is that by Miehe et al. (2010a,b), in which the strain energy
density is split into a positive and a negative component via spectral decomposition of the strain tensor. Another popular alternative
is that by Wu and Nguyen (2018), in which they considered a positive and a negative decomposition of the effective stress, similar
to the strain tensor decomposition, to prevent cracking under compression.

From the phase-field models discussed above, that by Miehe et al. (2010a,b) was derived within the framework of thermody-
namics. In their work, they discussed two numerical implementations known today as the monolithic and staggered approaches to
phase-field modeling, which spurred a myriad of new studies in the phase-field method. Later, the work by Miehe et al. was extended
to dynamic fracture (Hofacker and Miehe, 2013; Borden et al., 2014), and more recently, a simplified version of the model by Miehe
et al. (2010a,b) was implemented using user-defined subroutines in Abaqus (Msekh et al., 2015). For the sake of brevity, interested
readers are referred to Ambati et al. (2015) for a detailed review of phase-field models for brittle fracture.

Most studies on the phase-field method are focused on brittle fracture, while just a few of them have been focused on quasi-brittle
fracture. Bourdin et al. (2008) were the first to extend the variational formulation for brittle fracture to cohesive fracture which was
later recast by Verhoosel and De Borst (2013) in the context of the phase-field method by introducing a second auxiliary field that
captures the displacement jump across the fracturing surfaces. The approach by Verhoosel and De Borst (2013) is limited to problems
for which the crack path is known a priori. Moreover, the introduction of the second auxiliary field induces stress oscillations which
can only be avoided if different interpolation orders are used for the different auxiliary fields (see Vignollet et al. (2014), May
et al. (2015)). Later, Conti et al. (2016) and Freddi and Iurlano (2017) introduced a new phase-field model for cohesive fracture.
Their cohesive zone formulation was derived by analyzing the response of a bar subjected to traction and using the solution to
reconstruct the traction–separation response of an exponential CZM via a backtracking process. More recently, Wu and Nguyen
(2018) introduced a length-scale insensitive phase-field model for brittle fracture based on a CZM with linear softening. This was
accomplished by using a rational degradation function whose coefficients are obtained to replicate the linear softening response on a
1D bar subjected to traction. The same rational function was adopted by Wu (2017, 2018) to reproduce both linear and exponential
cohesive softening responses. In our work, we build upon the work by Wu and co-workers and incorporate an additional term into
the rational degradation function, enabling us to capture convex, linear, and concave softening responses.

3. Fundamentals of phase-field methods for quasi-brittle fracture

This section introduces the essential theoretical aspects of phase-field formulations for quasi-brittle fracture, laying the ground-
work for the derivation of our phase-field formulation in the following section. Consider a domain 𝛺 with a discrete crack, 𝛤 , as
shown in Fig. 2a. The domain is loaded with surface tractions t prescribed at the portion of the boundary, 𝜕𝛺𝑡, and supported on
the portion of the boundary, 𝜕𝛺𝑢. When considering the phase-field method, the discrete crack, 𝛤 , is approximated by its smeared
counterpart, 𝛤𝑑 , as shown in Fig. 2b, by introducing a scalar field, 𝑑 — the phase-field. This new field varies between 0 and 1 to
represent the unbroken and broken state of the material, respectively.

1 In addition to discrete and smeared crack approaches, there are other methods that have proven effective for simulating crack propagation in engineering
nd material science applications such as the Material Point Method (MPM), Peridynamics, and the Extended Finite Element Method (XFEM); however, those
3
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Fig. 2. Schematic representation of a solid domain 𝛺 with (a) a discrete crack 𝛤 and (b) a smeared crack 𝛤𝑑 .

The total potential energy, 𝛱 , of the discretely cracked body in Fig. 2a is given by

𝛱 = 𝑈 (𝛆, 𝛤 ) −𝑊ext(u), (1)

where

𝑈 (𝛆, 𝛤 ) = ∫𝛺∖𝛤
ψ0(𝛆)d𝑉 + ∫𝛤

𝜙𝑛d𝑆 (2)

is the stored energy of the cracking body, which consists of the bulk and fracture contributions, respectively; ψ0(𝛆) is the strain
energy density of the bulk material, where 𝛆(u) ∶= 1

2
(∇u + ∇uT) is the infinitesimal strain tensor, and 𝜙𝑛 is the mode I fracture

energy. Moreover,

𝑊ext(u) = ∫𝛺
f ⋅ ud𝑉 + ∫𝜕𝛺𝑡

t ⋅ ud𝑆 (3)

is the external potential energy of the system, where f is the distributed body force and u is the displacement field. Following the
regularized approach by Bourdin et al. (2000), the total potential energy (1) is approximated as

�̃� = 𝑈 (𝛆, 𝑑) −𝑊ext(u), (4)

where

𝑈 (𝛆, 𝑑) = ∫𝛺
ψ𝑏𝑢𝑙𝑘(𝛆, 𝑑)d𝑉 + ∫𝛺

𝜙𝑛𝛾(𝑑,∇𝑑)d𝑉 (5)

is the regularized stored energy, in which 𝛾(𝑑,∇𝑑) is the crack surface density function and ψ𝑏𝑢𝑙𝑘(𝛆, 𝑑) is the degrading strain energy
density in the bulk given by

ψ𝑏𝑢𝑙𝑘(𝛆, 𝑑) = 𝑔(𝑑)ψ0(𝛆), (6)

where 𝑔(𝑑) ∈ [0, 1] is a stiffness degradation function which accounts for the degradation of the initial strain energy ψ0(𝛆) as the
phase-field values increase.

3.1. Crack surface density function and geometric function

Following the work by Miehe et al. (2010a,b), the crack surface density function, 𝛾(𝑑,∇𝑑), is used to regularize the sharp crack
topology. In particular, 𝛾(𝑑,∇𝑑) is used to approximate the Dirac-delta function, 𝛿𝑠, such that the regularized crack surface,

𝐴𝑑 = |𝛤𝑑 |,

is computed as

𝐴𝑑 (𝑑) = ∫𝛺
𝛾(𝑑,∇𝑑)d𝑉 ≈ ∫𝛺

𝛿𝑠d𝑉 = ∫𝛤
d𝑆 = 𝐴𝑠,

where 𝐴𝑠 = |𝛤 | is the surface area of the sharp crack. The crack surface density function is typically expressed in terms of the crack
phase field and its gradient, as follows (Wu, 2017):

𝛾(𝑑,∇𝑑) ∶= 1
(

1 𝜔(𝑑) + 𝑙0|∇𝑑|
2
)

, (7)
4
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Fig. 3. Geometric function, 𝜔(𝑑), from Eq. (8), for various values of 𝜉.

where

𝑐0 = 4∫

1

0

√

𝜔(𝑑)d𝑑

is a scaling parameter, 𝜔(𝑑) is a geometric function that characterizes the continuous evolution of the phase field, and 𝑙0 is a
length-scale parameter that controls the extent of the crack surface regularization. The geometric function must satisfy 𝜔(0) = 0 so
that the regularized crack surface, 𝐴𝑑 , is zero for the unbroken state, and 𝜔(1) = 1 to represent the sharp crack surface, 𝐴𝑠, for the
fully broken state (Wu, 2017; Miehe et al., 2010b). A typical choice of geometric function used in phase-field models for brittle
fracture is 𝜔(𝑑) = 𝑑2 (Miehe et al., 2010a,b). This function makes the phase-field problem linear, which is computationally efficient,
and the bounds 0 ≤ 𝑑 ≤ 1 are inherently satisfied. Another typical choice in phase-field models for brittle fracture is the linear
geometric function 𝜔(𝑑) = 𝑑 introduced by Pham et al. (2011). This function restores the elastic state of the material before damage
nucleation. In the context of quasi-brittle fracture, Wu (2017) adopted the following geometric function, which is a generalization
of the two geometric functions discussed above:

𝜔(𝑑) = 𝜉𝑑 +
(

1 − 𝜉
)

𝑑2 ∀𝑑 ∈ [0, 1]. (8)

Here, 𝜉 ∈ [0, 2] is a scalar parameter to guarantee that 𝜔(𝑑) is bounded between 0 and 1. Fig. 3 illustrates the geometric function for
different values of 𝜉. In our work, we consider 𝜔(𝑑) = 2𝑑 − 𝑑2 (i.e., 𝜉 = 2) as this option is compatible with phase-field formulations
for cohesive fracture, and more importantly, it guarantees the 𝛤 -convergence of the phase-field model for 𝑙0 → 0 (Wu, 2017).2

3.2. Degradation function

The degrading strain energy density in the bulk from Eq. (6) is affected by a degradation function 𝑔(𝑑) that determines the way
the stored energy functional responds to changes in the crack phase-field. The degradation function must decrease monotonically
for 𝑑 ∈ [0, 1] (i.e., 𝑔′(𝑑) < 0 ∀𝑑 ∈ [0, 1]), and must satisfy 𝑔(0) = 1 for the unbroken state and 𝑔(1) = 0 for the fully broken state.
Moreover, 𝑔(𝑑) must satisfy 𝑔′(1) = 0 to ensure that the energetic fracture force converges to a finite value when the material is
fully broken (Miehe et al., 2010b).

Different degradation functions have been proposed in the literature, with the quadratic polynomial, 𝑔(𝑑) = (1 − 𝑑)2, being the
most popular one in standard phase-field models for brittle fracture (Bourdin et al., 2000; Miehe et al., 2010a,b). For quasi-brittle
fracture, Wu (2017) proposed a generic rational degradation function of the form:

𝑔(𝑑) =

(

1 − 𝑑
)𝑝

(

1 − 𝑑
)𝑝 +𝑄(𝑑)

, with 𝑝 > 0, (9)

where

𝑄(𝑑) = 𝑎1𝑑 ⋅ 𝑃 (𝑑), with 𝑃 (𝑑) = 1 + 𝑎2𝑑 + 𝑎2𝑎3𝑑
2. (10)

2 Among all the geometric functions discussed above, the typical geometric function implemented in brittle fracture, i.e., 𝜔(𝑑) = 𝑑2, is the only one that
yields 𝑑 = 0 in the absence of mechanical strains. Conversely, a geometric function such as that given by (8) yields 𝑑 ≠ 0 in the absence of mechanical strains
so that special strategies are needed to ensure that 𝑑 remains bounded between 0 and 1 during the entire loading history (Wu et al., 2019; Zhang et al., 2018).
Additional details regarding this issue will be provided later.
5
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Fig. 4. Rational degradation function, 𝑔(𝑑), from (9), for various values of 𝑎1.

The coefficients 𝑎1, 𝑎2, 𝑎3, and 𝑝 are all parameters to be calibrated. Fig. 4 shows different curves for 𝑔(𝑑) by fixing 𝑎2, 𝑎3, and 𝑝 and
varying 𝑎1. As we will discuss later, in this work we adopt the rational degradation function (9) but use a higher-degree polynomial
𝑃 (𝑑) to enable the phase-field model to capture cohesive zone models of arbitrary softening shape.

3.3. Governing balance equations

Following the procedure outlined by Miehe et al. (2010b), the total potential energy (4) can be used to obtain the corresponding
balance equations for the uncoupled displacement and phase field problems (i.e., adopting a staggered approach). The displacement
u and phase-field 𝑑 are determined by solving the minimization problem

(

u(𝒙), 𝑑(𝒙)
)

= Arg{min �̃�(u, 𝑑)} s.t. �̇� ≥ 0, 𝑑 ∈
[

0, 1
]

. (11)

By taking the first variation of the energy functional (4) with respect to u and applying the divergence theorem (Wu et al., 2019),
we obtain the following governing equations in strong form for the displacement field:

𝛿�̃�u ≥ 0 → ∇ ⋅ 𝛔 + f = 0 in 𝛺,

𝛔 ⋅ n = t on 𝜕𝛺𝑡.
(12)

Similarly, the first variation of (4) with respect to 𝑑 leads to

𝛿�̃�𝑑 ≥ 0 → 𝑌 − 𝜙𝑛
1
𝑐0

[

1
𝑙0
𝜔′(𝑑) − 2𝑙0𝛥𝑑

]

≤ 0. (13)

The stress tensor, 𝛔, in (12) and the thermodynamic driving force, 𝑌 , in (13) are respectively given by:

𝛔 =
𝜕ψ𝑏𝑢𝑙𝑘
𝜕𝛆

= 𝑔(𝑑)
𝜕ψ0
𝜕𝛆

= 𝑔(𝑑)�̄� and (14)

𝑌 = −
𝜕ψ𝑏𝑢𝑙𝑘
𝜕𝑑

= −
𝜕ψ𝑏𝑢𝑙𝑘
𝜕𝑔

𝜕𝑔
𝜕𝑑

= −𝑔′(𝑑) , with  ∶=
𝜕ψ𝑏𝑢𝑙𝑘
𝜕𝑔

, (15)

where �̄� is the effective stress tensor, and  is the effective crack driving force. The effective stress tensor is obtained as

�̄� =
𝜕ψ0
𝜕𝛆

= E0 ∶ 𝛆, (16)

where E0 is the elastic stiffness tensor. The non-negative thermodynamic force, 𝑌 , in (15) drives the evolution of the phase field and
is written in terms of the effective crack driving force  that represents the elastic strain energy of the undamaged material (Wu,
2017). For an isotropic elastic body, the effective crack driving force,  , is equal to the elastic strain energy, ψ0(𝛆). That is,

 = ψ0(𝛆) =
1
2
𝛆 ∶ E0 ∶ 𝛆. (17)

Cracks are typically initiated by the local accumulation of tensile stresses, which can occur due to material defects or geometric
irregularities. However, from Eq. (17), we cannot differentiate between tension and compression, so a phase-field model with this
formulation, although it is variationally consistent, may predict cracks that are not realistic. In order to prevent cracks under
compression, different alternatives for the elastic strain energy have been applied in phase-field models. One of the most widely used
is the anisotropic model of Miehe et al. (2010b) which consists of splitting the strain tensor into a positive and a negative component
to differentiate between tension and compression. This splitting allows the degradation function to affect only the damaged part of
6
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the material corresponding to the tension component of the elastic energy, thus avoiding the creation of cracks under compression.
However, this tension/compression split makes the displacement problem nonlinear increasing the computational time considerably.

Other alternatives to avoid cracks under compression are the so-called hybrid models in which a different effective crack driving
orce,  , is used for the evolution law of the crack phase-field (15). Hybrid models are computationally more efficient than strain

energy decomposition approaches, such as that proposed by Miehe et al. (2010b), because the displacement problem becomes
linear in the former. Ambati et al. (2015) compared the hybrid approach with the tension–compression split formulation by Miehe
et al. (2010b) for brittle problems and found the results to be very similar with savings in the computational cost of about one
order of magnitude. Although hybrid formulations are no longer variationally consistent, it has been proven that the second law
of thermodynamics3 is not violated (Wu, 2018). In this work, we adopt a hybrid approach and consider the following modified
effective crack driving force (Wu, 2017):

̄ = 1
2𝐸0

�̄�2eq with �̄�eq =
1

1 + 𝛽𝑐

(

𝛽𝑐⟨σ̄1⟩ +
√

3𝐽2

)

, (18)

here 𝐸0 is the Young’s modulus of the material; 𝛽𝑐 = 𝑓𝑐∕𝑓𝑡 −1, where 𝑓𝑐 and 𝑓𝑡 are the uniaxial compressive and tensile strengths
f the material, respectively;4 ⟨σ̄1⟩ = max(σ̄1, 0), where σ̄1 is the maximum principal value of the effective stress tensor; and 𝐽2 is
he second invariant of the deviatoric (effective) stress tensor, which can be obtained in terms of the principal stresses as

𝐽2 =
1
6

[

(

�̄�1 − �̄�2
)2 +

(

�̄�2 − �̄�3
)2 +

(

�̄�3 − �̄�1
)2
]

. (19)

Following Miehe et al. (2010b), we consider the so-called history field H to enforce irreversibility of the phase-field. Replacing
he thermodynamic driving force 𝑌 by −𝑔′(𝑑)H in the balance equation (13) yields:5

𝑔′(𝑑)H + 𝜙𝑛
1
𝑐0

[

1
𝑙0
𝜔′(𝑑) − 2𝑙0𝛥𝑑

]

= 0, with H = max
𝜏∈[0,𝑡]

̄(x, 𝜏). (20)

As discussed previously, unlike traditional phase-field approaches that use a geometric function of the form 𝜔(𝑑) = 𝑑2, those using a
geometric function such as that in (8) require damage boundedness 𝑑 ∈ [0, 1] to be enforced. Zhang et al. (2018) proposed a simple
strategy that consists of modifying the history field, H, in (20) as follows:

H = max
𝜏∈[0,𝑡]

[

̄(x, 𝜏), ψ̄
]

, (21)

where ψ̄ =
𝜎2max
2𝐸0

represents the critical energy required to obtain a zero phase-field value. In this study, we adopt the strategy
y Zhang et al. (2018) due to its simplicity and efficacy.

.4. Equivalent cohesive zone model

In this work, we use the equivalent traction–separation law presented by Wu (2017) from which expressions for the calibration
arameters 𝑎1, 𝑎2, 𝑎3, from (10), can be obtained. Wu (2017) considered a 1D bar with 𝑥 ∈ [−𝐿,𝐿], subjected to an increasing

displacement 𝑢∗ at both ends. Assuming symmetry and homogeneity, it can be anticipated that, as damage initiates and evolves, the
maximum value for the phase-field, 𝑑∗, will be located at 𝑥 = 0. Using the geometric function (8) with 𝜉 = 2 and the degradation
function (9)–(10), the balance equation (12) and the damage evolution equation (13) can be solved for the idealized 1D bar. The
solution results in expressions for the apparent displacement jump, 𝛥𝑛, and traction, 𝑇𝑛, as a function of the maximum value of the
damage parameter, 𝑑∗, along the bar length at the symmetric point 𝑥 = 0. The stress and apparent displacement jump define an
apparent traction–separation response or an equivalent cohesive zone model given by

𝑇𝑛(𝑑∗) = 𝜎max

√

(2 − 𝑑∗)(1 − 𝑑∗)𝑝
2𝑃 (𝑑∗)

and (22)

𝛥𝑛(𝑑∗) =
4
√

2𝜙𝑛
𝜋𝜎max ∫

𝑑∗

0

[

𝑃 (𝑑∗)
(1 − 𝑑∗)𝑝

2 − 𝑑
2 − 𝑑∗

−
𝑃 (𝑑)
(1 − 𝑑)𝑝

]−1∕2√𝑑𝑃 (𝑑)
(1 − 𝑑)𝑝

d𝑑. (23)

Using Eqs. (22)–(23), expressions for the calibration parameters 𝑎1, 𝑎2, 𝑎3 from (10) are obtained using the cohesive strength,
max, the initial slope, 𝑘0, and the final crack opening, 𝛿𝑛, as follows:

𝜎max ∶= lim
𝑑∗→0

𝑇𝑛(𝑑∗) ⇒ 𝑎1 =
4
𝜋𝑙0

⋅
𝐸0𝜙𝑛

𝜎2max
, (24)

3 The second law of thermodynamics implies that the crack growth process is inherently dissipative and irreversible, leading to a loss of mechanical energy
nd an increase in the internal energy of the material.

4 The value of 𝛽𝑐 is typically determined empirically or experimentally and can vary depending on the specific material being studied. The relation 𝑓𝑐∕𝑓𝑡 is
usually taken to be equal to 10 for normal concrete. The maximum normal stress criterion, or Rankine criterion, which can well predict the fracture of brittle
materials is recovered for 𝛽𝑐 →∞.

5 Note that the history field, H, in (20) is defined in terms of the modified effective crack driving force (18) instead of the maximum positive strain energy
density employed by Miehe et al. (2010b). This choice is motivated by previous work by Wu (2017), who showed that (18) is effective to model quasi-brittle
7

fracture problems.
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Fig. 5. Arbitrary apparent traction–separation curve obtained with the equivalent cohesive zone model (22)–(23). At the onset of crack nucleation (point A),
when 𝑑∗ = 0, we obtain 𝜎max and 𝑘0 using Eqs. (24)–(25). Also, at the fully broken state (point B), when 𝑑∗ = 1, we obtain 𝛿𝑛 using Eq. (26).

𝑘0 ∶= lim
𝑑∗→0

𝜕𝑇𝑛
𝜕𝛥𝑛

⇒ 𝑎2 = 2

(

−2𝑘0
𝜙𝑛

𝜎2max

)2∕3

−
(

𝑝 + 1
2

)

, and (25)

𝛿𝑛 ∶= lim
𝑑∗→1

𝛥𝑛(𝑑∗) ⇒ 𝑎3 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, 𝑝 > 2

1
𝑎2

[

1
8

(

𝛿𝑛𝜎max
𝜙𝑛

)2
− (1 + 𝑎2)

]

, 𝑝 = 2.
(26)

To facilitate the interpretation of Eqs. (24)–(26), Fig. 5 provides graphical definitions of the cohesive strength, 𝜎max, initial slope,
𝑘0, and final crack opening, 𝛿𝑛, for an arbitrary traction–separation curve. As shown by the figure, 𝜎max and 𝑘0 correspond to the
cohesive strength and initial slope of the traction–separation curves, which can be evaluated from (22) at the onset of fracture
initiation (i.e., when 𝑑∗ → 0). Moreover, 𝛿𝑛 corresponds to the crack opening at which the cohesive traction becomes zero and
can be obtained from (23) when 𝑑∗ → 1. For the sake of brevity, interested readers are referred to Wu (2017) for details on the
derivations leading to Eqs. (22)–(26).

Parameters 𝑎1, 𝑎2, 𝑎3 in Eqs. (24)–(26) can be calibrated as follows. From Eq. (24) it can be noticed that parameter 𝑎1 only
depends on material properties and the internal length-scale parameter, 𝑙0.6 In contrast, parameters 𝑎2, and 𝑎3 require the choice of
a softening law (e.g. linear, exponential, hyperbolic, Cornelissen) from which the initial slope, 𝑘0 (25), and the final crack opening,
𝛿𝑛 (26), can be obtained (Wu, 2017).

4. Regularized PPR model

This section discusses the proposed PPR-based phase-field model, herein referred to as the regularized PPR model. We begin with
a short description of the extrinsic PPR cohesive fracture model (Park et al., 2009) followed by the derivation of the regularized
PPR model.

4.1. Extrinsic PPR cohesive fracture model

The Park–Paulino–Roesler (PPR) cohesive zone model (Park et al., 2009) is a mixed-mode potential-based model which considers
different fracture energies in modes I and II simultaneously. In its most general form, the extrinsic PPR potential is given as

𝛹 (𝛥𝑛, 𝛥𝑡) = min(𝜙𝑛, 𝜙𝑡) +

[

𝛤𝑛

(

1 −
𝛥𝑛
𝛿𝑛

)𝛼
+ ⟨𝜙𝑛 − 𝜙𝑡⟩

]

×

[

𝛤𝑡

(

1 −
|𝛥𝑡|

𝛿𝑡

)𝛽
+ ⟨𝜙𝑛 − 𝜙𝑡⟩

]

, (27)

where 𝜙𝑛 and 𝜙𝑡 are the mode-I and mode-II fracture energies, respectively, 𝛤𝑛 = −𝜙𝑛 and 𝛤𝑡 = 1 (when 𝜙𝑛 = 𝜙𝑡) are energy
constants, 𝛥𝑛 and 𝛥𝑡 are the normal and tangential crack opening displacements, 𝛿𝑛 and 𝛿𝑡 are the normal and tangential final crack
opening widths, and 𝛼 > 1 and 𝛽 > 1 are non-dimensional shape parameters controlling the shape of the normal and tangential
softening responses, respectively.

6 It is suggested that the length scale parameter be a numerical parameter rather than a material property, which typically results in values that are not
small enough to resolve the regularized crack surface (Wu, 2018). Additionally, taking 𝑙0 as a numerical parameter allows for the definition of a general
traction–separation law within the framework of Barenblatt’s CZM (Barenblatt, 1959) since the failure strength and general softening law (Eqs. (22)–(23)) will
be independent of it. In this sense, global responses insensitive to 𝑙 can be guaranteed (Wu, 2018).
8
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Fig. 6. Range of traction–separation relationships achievable with the mode-I PPR cohesive fracture model. Note that the PPR model predicts convex softening
responses when 𝛼 < 2, linear softening responses when 𝛼 = 2, and concave softening responses when 𝛼 < 2.

To derive the regularized PPR model, this study only considers the component of the PPR potential corresponding to mode-I
tractions.7 After replacing 𝜙𝑛 = 𝜙𝑡 and 𝛥𝑡 = 0 into Eq. (27), the extrinsic PPR potential simplifies to

𝛹 (𝛥𝑛) = 𝜙𝑛

[

1 −
(

1 −
𝛥𝑛
𝛿𝑛

)𝛼
]

. (28)

Knowing that the final crack opening width in mode-I is equal to 𝛿𝑛 = 𝛼𝜙𝑛∕𝜎max (Park et al., 2009), the mode-I cohesive traction,
𝑇𝑛, obtained from the PPR potential (28) is given by:

𝑇𝑛 =
𝜕𝛹𝑛
𝜕𝛥𝑛

= 𝜎max

(

1 −
𝜎max
𝛼𝜙𝑛

𝛥𝑛

)𝛼−1
. (29)

As shown in Fig. 6, the softening response of the extrinsic PPR cohesive fracture model is convex when 𝛼 > 2, concave when 𝛼 < 2,
and linear when 𝛼 = 2.

The mode-I PPR potential (28) is a continuous polynomial that provides a finite final crack opening width. However, the potential
may predict non-zero tractions for physical separations greater than the final crack opening width. Therefore, the potential should
be defined in a valid softening domain. In this case, for the mode-I cohesive traction (29) the domain is limited by the normal final
crack opening width 𝛿𝑛, which means that if 𝛥𝑛 > 𝛿𝑛, the normal traction, 𝑇𝑛, is set to zero (Park et al., 2009).

4.2. Regularized PPR model

The extrinsic PPR cohesive fracture model (29), hereinafter referred to as the original PPR model, can describe convex, concave,
or linear softening responses depending on the value of the shape parameter 𝛼 (see Fig. 6). To drive a phase-field model capable of
recovering these types of cohesive softening responses, we rely on the general form of the apparent traction–separation relationship
given in Eqs. (22)–(23). Note that the apparent traction–separation relationship depends on parameter 𝑝 and on the polynomial 𝑃 (𝑑)
used to define the rational degradation function given in (9)–(10). The quadratic polynomial 𝑃 (𝑑) in (10) can capture convex and
linear softening responses but it is insufficient to capture concave softening responses. Therefore, to successfully recast the original
PPR model within the framework of the phase-field method, we need to modify the degradation function 𝑔(𝑑) so that it can capture
concave softening responses. To do so, we consider a third-order polynomial 𝑃 (𝑑), so that Eq. (10) becomes

𝑄(𝑑) = 𝑎1𝑑 ⋅ 𝑃 (𝑑), with 𝑃 (𝑑) = 1 + 𝑎2𝑑 + 𝑎2𝑎3𝑑
2 + 𝑎2𝑎3𝑎4𝑑

3, (30)

where 𝑎4 is an additional calibration parameter.
In Eq. (30), parameters 𝑎1, 𝑎2, and 𝑎3 are obtained following the same procedure described previously (see also (Wu, 2017)).

Parameters 𝑎1 and 𝑎2 remain unchanged despite the addition of 𝑎4 and can still be obtained from Eqs. (24) and (25), respectively.
Parameter 𝑎3, however, becomes dependent on the new parameter 𝑎4. The resulting expression for 𝑎3 is as follows:

𝛿𝑛 ∶= lim
𝑑∗→1

𝛥𝑛(𝑑∗) → 𝑎3 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, 𝑝 > 2

1
𝑎2 + 𝑎2𝑎4

[

1
8

(

𝛿𝑛𝜎max
𝜙𝑛

)2
− (1 + 𝑎2)

]

, 𝑝 = 2.
(31)

7 Although essential to correctly model mixed-mode fracture problems, a version of the regularized PPR model considering the general form of the extrinsic
PPR model is out of the scope of this work. However, our numerical results indicate that the mode-I version of the regularized PPR model is adequate to model
fracture problems with moderate mode mixity.
9
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Fig. 7. Softening curves predicted by the regularized PPR model for various values of 𝛼. As the results show, the regularized PPR model predicts almost identical
traction–separation responses as the original PPR model for a wide range of 𝛼 values.

To evaluate 𝑎2 (Eq. (25)) and the new 𝑎3 (Eq. (31)) we need the initial slope, 𝑘0, and the final crack opening, 𝛿𝑛, from the original
PPR model. These are obtained directly from Eq. (29) and are given by:

𝑘0 =
d𝑇𝑛
d𝛥𝑛

|

|

|

|

|𝛥𝑛=0
= −

(𝛼 − 1)𝜎2max
𝛼𝜙𝑛

and 𝛿𝑛 = 𝛼
𝜙𝑛
𝜎max

. (32)

Because the new parameter, 𝑎4, is used to capture concave softening responses, it will be set to zero when 𝛼 ≥ 2. For other values
of 𝛼, parameter 𝑎4 is obtained using a least-squares technique to approximate the PPR tractions given by (29) using the equivalent
traction–separation relationship (22)–(23). An optimized value for 𝑎4 is obtained for a given value of 𝛼, and subsequently a cubic
polynomial is employed to fit the optimized 𝑎4 values as a function of 𝛼. This procedure yields the following expression for 𝑎4:

𝑎4 =

⎧

⎪

⎨

⎪

⎩

0, 𝛼 ≥ 2
−14.49𝛼3 + 63.01𝛼2 + 87.97𝛼 + 39.86 𝛼 < 2.

(33)

From our experience, parameter 𝑝 helps to control the shape of the softening response when 𝛼 takes large values. To obtain an
expression for 𝑝 as a function of 𝛼, we adopt the same least-squares procedure employed to obtain (33). That is, parameter 𝑝, is
optimized for different values of 𝛼 to fit the original PPR model, leading to the following cubic polynomial:

𝑝 =

⎧

⎪

⎨

⎪

⎩

2, 𝛼 ≤ 2.6
7.30 × 10−4𝛼3 − 1.96 × 10−2𝛼2 + 1.93 × 10−1𝛼 + 1.62, 𝛼 > 2.6.

(34)

Fig. 7 compares the traction–separation curves obtained with the regularized PPR model against those from the original PPR
model for different values of 𝛼.8 The curves from the regularized PPR model are obtained from Eqs. (22)–(23) using the polynomial
𝑃 (𝑑) from (30) with parameters 𝑎1 and 𝑎2 from Eqs. (24)–(25), 𝑎3 from Eq. (31), 𝑎4 from Eq. (33), and 𝑝 from Eq. (34). As shown
by the results in Fig. 7, the traction–separation curves from the regularized and the original PPR model are nearly identical.

Due to its ability to control the shape of the cohesive softening response, the regularized PPR model can also be used to reproduce
or approximate some of the traction–separation laws frequently adopted in the literature. The approximation can be achieved
by selecting an appropriate value for the shape parameter, 𝛼, that matches the slope and the final crack opening of the target
traction–separation law and calibrating the parameter 𝑝, if needed, to obtain a better approximation. To illustrate this, the linear
and exponential softening responses will be recovered.

For the linear softening response we have

𝑇𝑛(𝛥𝑛) = 𝜎maxmax
(

1 −
𝜎max
2𝜙𝑛

𝛥𝑛, 0
)

, 𝑘0 = −
𝜎2max
2𝜙𝑛

, and 𝛿𝑛 =
2𝜙𝑛
𝜎max

.

8 Values of 𝛼 ∈ (1, 2) (concave softening response) violate the crack irreversibility condition because the initial crack bandwidth is larger than the ultimate
crack bandwidth (see Wu (2017)). However, we found that the crack irreversibility condition is only slightly violated for 𝛼 ∈ [1.5, 2). Because this range of 𝛼
values effectively encompasses concave softening responses for a wide range of practical applications, we recommend 𝛼 ∈ [1.5, 2) whenever concave softening
responses are required.
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Fig. 8. Classical softening responses reproduced by the regularized PPR model: (a) linear softening (𝛼 = 2) and (b) exponential softening (𝛼 = 15). The results
shown here are obtained for 𝜎max = 1 MPa and 𝜙𝑛 = 0.1 N/mm.

By comparing the slope and the final crack opening against the ones for the regularized PPR model, Eq. (32), it can be noticed that
by choosing 𝛼 = 2, the linear traction–separation law can be exactly recovered (see Fig. 8a). For the exponential softening response,
its initial slope and its final crack opening are given by

𝑇𝑛(𝛥𝑛) = 𝜎maxexp
(

−
𝜎max
𝜙𝑛

𝛥𝑛

)

, 𝑘0 = −
𝜎2max
𝜙𝑛

, and 𝛿𝑛 = +∞.

Similarly, by comparing these equations with Eq. (32) it can be noticed that the greater 𝛼 is, the closer the initial slope and the final
crack opening are to those from the exponential model. In fact, by comparing Eq. (32) with the equations above, one can prove
that when 𝛼 →∞ the initial slope and the final crack opening can be exactly recovered (see Fig. 8b).

5. Finite element implementation

The governing balance equations (12) and (20) are solved via the finite element method. The weak form of the governing balance
equations are given by

∫𝛺
𝑔(𝑑)�̄� ∶ 𝛿𝛆 d𝑉 − ∫𝛺

f ⋅ 𝛿ud𝑉 − ∫𝜕𝛺𝑡

t ⋅ 𝛿ud𝑆 = 0 (35)

and

∫𝛺
𝜙𝑛
𝑐0𝑙0

[

𝜔′(𝑑)𝛿𝑑 + 𝑙20∇𝑑 ⋅ 𝛿∇𝑑
]

d𝑉 + ∫𝛺
𝑔′(𝑑)H𝛿𝑑 d𝑉 = 0, (36)

respectively.
The domain 𝛺 is discretized into 𝑁𝑒 finite elements, {𝛺𝑒}

𝑁𝑒
𝑒=1. Within each finite element, the displacement field u and the phase

field 𝑑 are respectively approximated using the element nodal displacement vector, u𝑒, and the nodal phase-field vector, d𝑒, as
follows:

u = Nuu𝑒, 𝑑 = N𝑑d𝑒, (37)

where Nu and N𝑑 are given by:

Nu =
[

𝑁1 0 … 𝑁𝑁 0
0 𝑁1 … 0 𝑁𝑁

]

and N𝑑 =
[

𝑁1 ... 𝑁𝑁

]

, (38)

where 𝑁1,… , 𝑁𝑁 are the one-dimensional shape functions and 𝑁 is the number of nodes per element.9 The infinitesimal strain
vector and the gradient of the phase-field within an element are obtained as:

𝛆 = Buu𝑒 and ∇𝑑 = B𝑑d𝑒, (39)

respectively, where

Bu =
⎡

⎢

⎢

⎢

⎣

𝑁1,𝑥 0 … 𝑁𝑁,𝑥 0
0 𝑁1,𝑦 … 0 𝑁𝑁,𝑦

𝑁1,𝑦 𝑁1,𝑥 … 𝑁𝑁,𝑦 𝑁𝑁,𝑥

⎤

⎥

⎥

⎥

⎦

and B𝑑 =
[

𝑁1,𝑥 … 𝑁𝑁,𝑥
𝑁1,𝑦 … 𝑁𝑁,𝑦

]

. (40)

9 In our implementation, we consider linear triangular elements, such that 𝑁 = 3.
11
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w
e

w
t
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Here, 𝑁𝑖,𝑥 and 𝑁𝑖,𝑦, 𝑖 = 1,… , 𝑁 , refer to the partial derivatives of the shape functions with respect to 𝑥 and 𝑦, respectively. We use
the same discretization for the test functions, such that:

𝛿u = Nu𝛿u𝑒, 𝛿𝑑 = N𝑑𝛿d𝑒, 𝛿𝛆 = Bu𝛿u𝑒, 𝛿∇𝑑 = N𝑑𝛿d𝑒 (41)

where 𝛿u𝑒 and 𝛿d𝑒 are vectors containing nodal values of the test functions.
After applying the aforementioned discretization, the weak form (35)–(36) can be written (at the element level) as

(𝛿u𝑒)T
[

∫𝛺𝑒

BT
u𝑔(𝑑)D𝑒Bud𝑉

]

u𝑒 − (𝛿u𝑒)T
[

∫𝛺𝑒

NT
uf d𝑉 + ∫𝜕𝛺𝑒

𝑡

NT
utd𝑆

]

= 0 (42)

(𝛿d𝑒)T
[

∫𝛺𝑒

BT
𝑑

(

2𝑙0𝜙𝑛
𝑐0

)

B𝑑d𝑉
]

d𝑒 + (𝛿d𝑒)T
[

∫𝛺𝑒

NT
𝑑

(

𝑔′(𝑑)H +
𝜙𝑛
𝑐0𝑙0

𝜔′(𝑑)
)

d𝑉
]

= 0 (43)

where D𝑒 is the tangent modulus matrix. For the displacement field, Eq. (42) results in the discretized weak form:
[

∫𝛺𝑒

BT
u𝑔(𝑑)D𝑒Bu d𝑉

]

u𝑒

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Fint
u

= ∫𝛺𝑒

NT
uf d𝑉 + ∫𝜕𝛺𝑒

𝑡

NT
ut d𝑆

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Fext
u

, (44)

here the left-hand side of (44) represents the element internal force vector, Fint
u , and the right-hand side represents the element

xternal force vector, Fext
u . For the phase-field, Eq. (43) results in the discretized weak form (at the element level):

[

∫𝛺𝑒
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𝑑
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)
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]

d𝑒 +
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𝑑

(

𝑔′(𝑑)H +
𝜙𝑛
𝑐0𝑙0

𝜔′(𝑑)
)

d𝑉
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Fint
𝑑

= 0, (45)

here the left-hand side of (45) represents the internal force vector of the phase field, Fint
𝑑 , and the right-hand side represents

he external force vector, Fext
𝑑 = 0. The element stiffness matrix for the displacement field and the element tangent matrix for the

hase-field are obtained, respectively, as

k𝑒u =
𝜕Fint

u
𝜕u𝑒 and k𝑒𝑑 =

𝜕Fint
𝑑

𝜕d𝑒
. (46)

which results in the following local element matrices for the FE implementation:

k𝑒u = ∫𝛺𝑒

[

BTu𝑔(𝑑)D𝑒Bu
]

d𝑉 , (47)

k𝑒𝑑 = ∫𝛺𝑒

[

BT𝑑
(

2𝜙𝑛𝑙0
𝑐0

)

B𝑑 +NT𝑑
(

𝑔′′(𝑑)H +
𝜙𝑛
𝑐0𝑙0

𝜔′′(𝑑)
)

N𝑑

]

d𝑉 . (48)

The element equations (44)–(48) can be assembled in a standard form to solve the displacement and phase-field problems on
the entire domain, 𝛺. The global stiffness matrix and the tangent matrix are obtained as:

Ku =
𝑁𝑒
∑

𝑒=1
k𝑒u and K𝑑 =

𝑁𝑒
∑

𝑒=1
k𝑒𝑑 , (49)

where ∑ refers to the FE assembly operator.
Given that we are implementing the hybrid formulation (Ambati et al., 2015), the displacement problem is linear and it can

be solved directly in each time step. Conversely, the phase-field problem is nonlinear and needs to be solved iteratively via the
Newton–Raphson method. The implementation of the regularized PPR model follows the schematic flowchart shown in Fig. 9 and
the pseudocode shown in Algorithm 1. The first step is to read all necessary input data, including the finite element discretization and
boundary conditions, material properties, model parameters (length scale, 𝑙0, and shape parameter, 𝛼), and convergence tolerances.
Using the provided input data, the next step is to compute the calibration parameters 𝑎1, 𝑎2, 𝑎3, 𝑎4, and 𝑝 using Eqs. (24), (25),
(31), (33), and (34), respectively. Once the calibration parameters have been obtained, the next step is to use the Newton–Raphson
method to solve the phase-field problem defined using Eq. (45) until some convergence criteria are satisfied. Once the phase-field
problem has reached convergence, the next step is to solve the displacement problem defined using Eq. (44).10 Finally, the history
field, H, is updated with the phase-field and displacement field values obtained at the current time step.

10 Given that the element equation (44) is linear, the displacement problem can be solved in a single Newton–Raphson iteration.
12
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Fig. 9. Flowchart for the implemented staggered solution.

Algorithm 1 Staggered scheme for the regularized PPR model
1: input: Load data: Finite element mesh and boundary conditions

Material parameters: 𝐸, 𝜈, 𝜙𝑛, 𝜎max
Model parameters: 𝑙0, 𝛼
Convergence tolerance and number of load steps: Tol and 𝑁steps

2: evaluate: 𝑎1, 𝑎2, 𝑎3, 𝑎4, and 𝑝 from (24), (25), (31), (33), and (34), respectively
3: initialize: 𝑗 = 0, d0 = 0, u0 = 0, and H0 using Eq. (21)
4: for 𝑖 = 1 to 𝑁steps do ⊳ Loop over load/displacement steps
5: Set 𝑗 = 0, d𝑗𝑖 = d𝑖−1, and Err = 10 × Tol
6: while Err > Tol do ⊳ Newton-Raphson iterations
7: Evaluate geometric function 𝜔(d𝑗𝑖 ) using Eq. (8)
8: Evaluate degradation function 𝑔(d𝑗𝑖 ) using Eqs. (9) and (30)
9: Obtain phase-field increment, 𝛥d𝑗𝑖 , by solving K𝑑 (d

𝑗
𝑖 )𝛥d

𝑗
𝑖 = −F

int
𝑑 (d𝑗𝑖 ), with K𝑑 (d

𝑗
𝑖 ) from

(49) and Fint
𝑑 (d𝑗𝑖 ) assembled from (45)

10: Update phase-field: d𝑗+1𝑖 = d𝑗𝑖 + 𝛥d𝑗𝑖
11: Obtain displacement vector, u𝑖, by solving Kuu𝑖 = Fext

u , with Ku from (49)
12: Update history field H𝑖 using Eq. (21)
13: Evaluate norm of phase-field residual: Err = ‖Fint

𝑑 (d𝑗𝑖 )‖
14: Update iteration counter: 𝑗 ← 𝑗 + 1
15: end while
16: output: d𝑖 ← d𝑗𝑖 and u𝑖
17: end for
13
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Fig. 10. Three-point bending of a notched concrete beam: (a) domain and boundary conditions, (b) finite element mesh, (c) crack path predicted by the
regularized PPR model with 𝑙0 = 8 mm, and (d) load vs. deflection curves.

6. Results and discussion

Here we discuss several representative examples that demonstrate the ability of the regularized PPR model to simulate quasi-
brittle fracture problems. For each example, we compare the obtained load–deflection curves with those from other phase-field
formulations and with experimental results. In addition, the crack path obtained with the regularized PPR model is compared,
when available, against those reported experimentally.

All numerical computations are obtained using a displacement-controlled finite element implementation of the regularized PPR
model with constant displacement increments. Plane stress conditions are used to solve the problems unless otherwise specified.
Problems in which the crack path can be easily predicted are also modeled with the original PPR model.11 In order to ensure an
accurate prediction of the fracture energy in the discrete context and to ensure that the numerical solution adequately resolves

11 The FE implementation used to solve problems where the crack path is known a priori is based on the thermodynamically consistent intrinsic PPR
model (Spring et al., 2016).
14
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Fig. 11. Fracture modeling of an L-shaped concrete panel: (a) domain and boundary conditions, (b) finite element mesh (coarse), (c) crack path predicted by
the regularized PPR model with 𝑙0 = 5 mm, and (d) load vs. deflection curves.

the phase-field gradient, for most of the problems we adhere to a general rule where we choose the length scale, 𝑙0, such that the
element size in the critical zone satisfies ℎ ≤ 𝑙0∕5.

6.1. Mode-I fracture of a three-point bending beam

In this example, we use the regularized PPR model to simulate a three-point bending test on the notched concrete beam reported
by Rots (1988) whose geometry is shown in Fig. 10a. The beam has an out-of-plane thickness of 100 mm and it is discretized using
9,054 linear triangular elements, such that the effective element size is ℎ ≈ 0.50 mm in the critical zone and ℎ ≈ 10 mm far from it,
as shown in Fig. 10b. The beam is made of concrete with Young’s modulus 𝐸0 = 2.0 × 104 MPa and Poisson’s ratio 𝜈 = 0.2 (Rots,
1988). The fracture parameters used to solve this problem were obtained via inverse analysis to improve the approximation of the
experimental load–deflection curves (Shen and Paulino, 2011b,a; Hill et al., 2017). The calibrated fracture parameters are 𝜙𝑛 = 0.078
N/mm, 𝜎max = 2.04 MPa, and 𝛼 = 4. For this problem, we obtain numerical results using two different length-scale parameters
(𝑙0 = 4 mm and 8 mm) and constant displacement increments of 𝛥u𝑦 = 5 × 10−4 mm.

Figs. 10c-d show the numerical results obtained with the regularized PPR model. Fig. 10c illustrates the crack path obtained with
the regularized PPR model for 𝑙0 = 8 mm. It can be observed that the model predicts a vertical crack path (as expected) without any
additional crack-tracking strategy. Fig. 10d compares the numerical and experimental load–deflection curves. Fig. 10d shows the
load–deflection curves obtained with the regularized PPR model for 𝑙0 = 4 mm and 𝑙0 = 8 mm as well as the load–deflection curve
obtained with the original PPR model and that reported by Wu (2017). As observed in the figure, the numerical load–deflection
curves obtained with the regularized PPR model are in good agreement with the experimental curves reported by Rots (1988).
Moreover, we observe that the load–deflection curves are slightly affected by 𝑙0 and the results approach those obtained with the
original PPR model as 𝑙0 decreases.12 This last observation is valid since the smeared crack approaches a sharp crack as 𝑙0 tends to
zero.

12 Although our model is somewhat sensitive to the length scale parameter 𝑙0, Fig. 10 nonetheless shows that the results are still very similar for a wide range
of values of this parameter.
15
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Fig. 12. Mixed-mode fracture modeling of an eccentrically notched beam under three point bending: (a) domain and boundary conditions, (b) finite element
mesh, (c) crack path predicted by the regularized PPR model with 𝑙0 = 1.5 mm, and (d) load vs. deflection curves.

6.2. Mixed-mode fracture of an L-shaped panel

In this example, we consider the mixed-mode fracture of an L-shaped panel with geometry and boundary conditions shown in
Fig. 11a. The geometry, loading, material parameters, and experimental results are adopted from Winkler (2001). The out-of-plane
thickness of the L-panel is 100 mm and it is made of concrete with Young’s modulus 𝐸0 = 2.0×104 MPa and Poisson’s ratio 𝜈 = 0.18.13

The fracture parameters used for the regularized PPR model are 𝜙𝑛 = 0.130 N/mm, 𝜎max = 2.5 MPa, and 𝛼 = 7. The calibrated cohesive
strength adopted in the simulations is 20% lower than that reported by Unger et al. (2007) and the fracture energy is 5% lower.
A calibrated cohesive strength is used to bring the simulated results into reasonable comparison with the experimental results, as
suggested by Song et al. (2006).

To solve this problem, we use 𝑙0 = 5 mm and consider three mesh sizes (i.e., coarse, medium, and fine), where each mesh is
composed of linear triangular elements which become refined in the critical zone where the crack is expected to propagate (Fig. 11b).
The element size in the critical region is ℎ ≈ 1.0 mm for the first mesh (coarse), ℎ ≈ 0.50 mm for the second mesh (medium), and
ℎ ≈ 0.25 mm for the third mesh (fine) and the element size outside the critical region is ℎ ≈ 20 mm for each of the three meshes.
The computations were performed using constant displacement increments of 𝛥u𝑦 = 1.0 × 10−4 mm at the point of load application
(see Fig. 11a-b).

Fig. 11c shows the crack path predicted by the regularized PPR model with the coarse mesh. These results show that the
regularized PPR model can reasonably capture the curved crack paths reported experimentally.14 Finally, Fig. 11d compares the
numerical load–deflection curves obtained with the regularized PPR model against those reported by Wu et al. (2019), and against
those obtained experimentally by Winkler (2001). As the results indicate, the load–deflection curves obtained with the regularized
PPR model closely resemble those reported experimentally. Additionally, when comparing the results from the coarse, medium, and
fine meshes in Fig. 11d, it is clear that our finite element results converge under mesh refinement.

6.3. Mixed-mode fracture of a three-point bending beam

In this example, we consider a beam with an eccentric notch and load undergoing three-point bending. For this problem, we use
the experimental results reported by Gálvez et al. (1998). The geometry and boundary conditions are shown in Fig. 12a. The beam
has an out-of-plane thickness of 50 mm, and it is discretized using 12,893 linear triangular elements with an effective element size
of ℎ ≈ 0.30 mm in the critical zone and ℎ ≈ 10 mm far from it (Fig. 12b). The beam is made of concrete with Young’s modulus
𝐸0 = 3.8 × 104 MPa and Poisson’s ratio 𝜈 = 0.2 (Zhang et al., 2018). The fracture parameters used for the regularized PPR model are

13 To obtain the numerical results, here we adopt the material parameters reported by Unger et al. (2007), but modify the Young’s modulus to better estimate
the initial slope reported in the experiments (Fig. 11d).

14 The range of experimental crack paths for this problem is depicted in both Fig. 11a and Fig. 11c.
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Fig. 13. Fracture modeling of a symmetrically notched beam under three-point bending (brittle fracture): (a) domain and boundary conditions, (b) finite element
mesh, (c) crack path predicted by the regularized PPR model with 𝑙0 = 0.01 mm, and (d-e) load vs. deflection curves obtained with 𝑙0 = 0.01 mm and 𝑙0 = 0.02 mm,
respectively.

𝜙𝑛 = 0.069 N/mm,15 𝜎max = 3.0 MPa, and 𝛼 = 4. Finally, we use 𝑙0 = 1.5 mm and solve the problem by applying constant displacement
increments of 𝛥u𝑦 = 0.5 × 10−4 mm.

The range of experimental crack paths is shown in Fig. 12a and the numerical crack path obtained with the regularized PPR
model is shown in Fig. 12c. As the results show, the crack path predicted numerically closely resembles the range of experimental
crack paths reported by Gálvez et al. (1998), highlighting the ability of the regularized PPR model to capture curved crack paths for
problems under mixed-mode loading. In addition, Fig. 12d compares the load–CMOD (crack mouth opening displacement) curve
obtained with the regularized PPR model against the range of experimental load–CMOD curves reported by Gálvez et al. (1998). As
shown by these results, the regularized PPR model provides relatively accurate predictions of the experimental load–CMOD curves.

6.4. Symmetric three point bending test (brittle)

In this example, we use the regularized PPR model to simulate a symmetrically notched beam under three-point bending. This
example has been widely employed to verify phase-field models for brittle fracture (Miehe et al., 2010b). The test consists of a
rectangular beam with a triangular notch at the middle of the bottom surface. The geometry and boundary conditions are displayed

15 The fracture energy we use to obtain the numerical results is 10% smaller than that reported by Zhang et al. (2018).
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Fig. 14. Fracture modeling of a disk-shaped compact tension (DC(T)) specimen: (a) domain and boundary conditions, (b) finite element mesh, (c) crack path
predicted by the regularized PPR model, and (d) load vs. CMOD curves.

in Fig. 13a. The beam is discretized using 23,014 linear triangular elements with a refinement in the critical zone, such that the
effective element size in that zone is ℎ ≈ 0.002 mm and ℎ ≈ 0.085 mm far from it (Fig. 13b). The beam is made of concrete with
Young’s modulus 𝐸0 = 2.08 × 104 MPa and Poisson’s ratio 𝜈 = 0.3 (Wu, 2018). For this problem, we choose 𝛽𝑐 = 100 (cf. Eq. (18))
so the strain energy is mainly driven by σ̄1. The fracture parameters used for the regularized PPR model are 𝜙𝑛 = 0.54 N/mm,
𝜎max = 200 MPa, and 𝛼 = 2.16 For this problem, we obtained numerical results for 𝑙0 = 0.01 mm and 0.02 mm. The computations are
performed following Miehe et al. (2010b), that is, using constant displacement increments of 𝛥u𝑦 = 1.0 × 10−4 mm for the first 360
loading steps and 𝛥u𝑦 = 1.0 × 10−6 mm for the subsequent loading steps.

Figs. 13c-e show the numerical results obtained with the regularized PPR model. From Fig. 13c, we note that the model predicts
a vertical crack that nucleates at the notch tip and develops vertically toward the top surface (as expected). Fig. 13d-e compares the
numerical load–deflection curves obtained with the regularized PPR model against those reported by Miehe et al. (2010b) and by
Wu and Nguyen (2018), and against that obtained with the original PPR model. As the results indicate, the load–deflection curves
obtained with the regularized PPR model are nearly identical to those reported by Miehe et al. (2010b) and by Wu and Nguyen
(2018), and to that obtained with the original PPR model. Finally, when comparing Figs. 13d and 13e one can observe that, as 𝑙0
decreases, the load–deflection curves from the regularized PPR model approach the load–deflection curve from the original PPR
model.

6.5. Disk-shaped compact tension test

Here, we use the regularized PPR model to simulate a disk-shaped compact tension (DC(T)) test. The geometry and dimensions
of the DC(T) test sample are taken from Song et al. (2006) (see Fig. 14a). The out-of-plane thickness of the DC(T) test specimen
is 50 mm, and it is discretized using 16,948 linear triangular elements, such that the effective element size is ℎ ≈ 0.25 mm in
the critical zone and ℎ ≈ 5 mm far from it (Fig. 14b). The DC(T) test sample is made of asphalt concrete with Young’s modulus,
𝐸0 = 14.2×103 MPa and Poisson’s ratio 𝜈 = 0.35 (Song et al., 2006). The fracture parameters used to solve this problem are 𝜙𝑛 = 0.328
N/mm, 𝜎max = 3.56 MPa, and 𝛼 = 7. For this problem, we obtain numerical results using 𝑙0 = 2.5 mm and constant displacement
increments of 𝛥u𝑦 = 1 × 10−4 mm.

16 Here we use 𝛼 = 2 to recover the linear softening response used by Wu and Nguyen (2018).
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Fig. 15. Fracture modeling of a double cantilever beam (DCB): (a) domain and boundary conditions, (b) finite element mesh, (c) crack path predicted by the
regularized PPR model, and (d) load vs. deflection curves.

The resulting crack path and load–CMOD (crack mouth opening displacement) curve obtained with the regularized PPR model
are shown in Figs. 14c and d, respectively. Fig. 14c shows that the regularized PPR model predicts a horizontal crack path that
develops along the symmetric center line, as expected. Fig. 14d compares the load–CMOD curves obtained numerically with the
regularized PPR model and the original PPR model against those obtained experimentally by Song et al. (2006). As observed in the
figure, the results from the regularized PPR model are nearly identical to those obtained with the original PPR model. Moreover,
the two curves obtained numerically are in good agreement with those obtained experimentally.

6.6. Double cantilever beam test

This example demonstrates the ability of the regularized PPR model to simulate fracture of quasi-brittle materials characterized
by concave softening responses. Here, we consider a double cantilever beam (DCB) test and compare the numerical results obtained
with the regularized PPR model against those obtained with various classical cohesive zone models (i.e., trapezoidal and bilinear),17

the original PPR model, and against experimental results reported by Pirondi and Nicoletto (2000).
The geometry and boundary conditions for the DCB test are shown in Fig. 15a. The DCB test specimen consists of two substrates

made of aluminum, which are partially bonded with a methacrylate adhesive interface. Each aluminium substrate is 15-mm thick,
30-mm wide, and 120-mm long, and the adhesive interface is 0.3-mm thick and 80-mm long. The configuration has a 40-mm notch
measured from the left edge of the beams, as shown in Fig. 15a. The aluminium substrates are modeled using a linear elastic material
with Young’s modulus 𝐸𝑠 = 70 GPa and Poisson’s ratio 𝜈𝑠 = 0.33, whereas the adhesive layer is modeled using a linear elastic material
with Young’s modulus 𝐸𝑎 = 880 MPa and Poisson’s ratio 𝜈𝑎 = 0.15. We consider the following fracture properties: 𝜙𝑛 = 0.523 N/mm,
𝜎max = 3.3 MPa, and 𝛼 = 1.5.18 We assign these fracture properties only to the elements within the adhesive layer, because that is
where fracture is expected to propagate. For this problem, we also use 𝑙0 = 0.11 mm, such that the phase field can fully develop
within the domain comprised by the adhesive layer. Moreover, we also set 𝛽𝑐 = 13 in Eq. (18) and use constant displacement
increments of 𝛥u𝑦 = 1 × 10−5 mm. Finally, we assume plane strain condictions to match the initial slope the load–deflection curves
reported by Alfano et al. (2009).

In order to resolve the length scale parameter properly, the adhesive layer is discretized using 45,710 linear triangular elements,
such that the effective element size is ℎ ≈ 0.03 mm in this critical zone (Fig. 15b). The substrates are discretized with 44,772
linear triangular elements. The resulting crack path and load–deflection curve obtained with the regularized PPR model are shown

17 The results obtained for the classical cohesive zone models are adopted from Alfano et al. (2009). Here, we emphasize that the results from Alfano et al.
(2009) are based on cohesive zone models and not on phase-field models.

18 Note that we are using 𝛼 < 2 (concave softening response) for this problem. Our rationale for choosing 𝛼 < 2 is explained in detail in the following
subsection.
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Fig. 16. Effect of the shape parameter, 𝛼, on the load–deflection response for the double cantilever beam from Fig. 15.

in Fig. 15c and d, respectively. Fig. 15c shows that the crack path predicted by the regularized PPR model is located within the
adhesive layer, as desired. Fig. 15d compares the numerical load–deflection curves obtained with the regularized PPR model, the
original PPR model, and the bilinear and trapezoidal cohesive zone models against the experimental load–deflection curves reported
by Pirondi and Nicoletto (2000). From Fig. 15d, it can be observed that the regularized PPR curve is nearly identical to the curve
obtained with the original PPR model. Also, both the regularized and original PPR model results are close to the experimental ones.
For the bilinear CZM, although the pre-peak response is close to the experimental one, the curve becomes more rounded close to
the peak load, slightly underestimating the experimental peak load. The trapezoidal CZM is very good at capturing the peak load,
but the post-peak results deviate from those obtained with the regularized PPR model (which are closer to the experimental ones).

6.6.1. Shape parameter effect
Here, we discuss the effect the shape parameter has on the load–deflection curve for the DCB test discussed above. Fig. 16

shows some of the relevant results illustrating how the load–deflection curves vary when we vary 𝛼. As can be observed, all the
load–deflection curves are nearly identical until u ≈ 0.15 mm, after which the curves start to deviate depending on the value of
𝛼. When the shape parameter takes small values (e.g., 𝛼 = 1.2), the response close to the peak load tends to be sharper and the
peak is reached with a smaller deflection than that reported experimentally. Conversely, when 𝛼 takes larger values (e.g., 𝛼 > 2)
the load–deflection curves tend to be more rounded close to the peak load and the predicted peak load underestimates the peak
load measured experimentally. In the post-peak regime, when the deflection is u ≈ 0.4 mm, the curves converge again and become
nearly identical to one another. Focusing only on the portion of the curves close to the peak load, Fig. 16 shows that the optimal
value of the shape parameter is 𝛼 = 1.5, which is the value we used to solve this problem, as discussed previously (cf. Fig. 15).19

6.7. Size effect analysis of symmetrically notched beams

In order to accurately model fracture of quasi-brittle materials, size, shape, and boundary effects must be properly accounted
for. In general, quasi-brittle materials display a fracture process zone (FPZ) whose size is significant when compared to the size of
the specimen. For instance, the FPZ size in concrete is roughly equivalent to 3–6 times the maximum aggregate size (Grégoire et al.,
2013). As a result, classical linear elastic fracture mechanics is no longer applicable (Bažant and Planas, 1997).

The so-called structural size effect, which results in a decrease in the nominal peak stress, occurs for geometrically identical
structures when the ratio between the sizes of the FPZ and the structure varies as the structure size changes. Moreover, the size and
shape of the FPZ are different when fracture initiates and propagates at a flat boundary for unnotched specimens, leading to the
so-called boundary effect of the nominal peak stress (Grégoire et al., 2013). The design of engineering structures often uses material
properties that are measured at the laboratory scale, and in the majority of situations, fractures nucleate and spread in the presence
of boundary effects, making the aforementioned size and boundary effects of substantial practical significance (Feng and Wu, 2018).

In this example, the regularized PPR model is applied to the modeling of fracture and size effects in concrete under mode-I
fracture. Here we show the ability of the model to capture Type 1 and Type 2 size effects (Hoover et al., 2013). Type 1 size effects
occur in structures that have no notches nor preexisting large cracks and fail right after the initiation of a macro-crack from a smooth
surface. Type 2 size effects occur when either a deep notch or a long stress-free crack has grown in a stable manner before reaching
the maximum load (Hoover et al., 2013).

Here, two different three-point bending configurations of notched and unnotched concrete beams under mode-I fracture are
studied. In order to regularize the sharp crack topology with adequate accuracy, the length scale parameter 𝑙0 is chosen to be equal

19 Because the regularized PPR model with 𝛼 < 2 can capture concave softening responses, it finds applicability in scenarios where trapezoidal cohesive zone
models are better suited than their linear or convex counterparts.
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Fig. 17. Notched and unnotched three-point bending test specimens used to obtain the results shown in Fig. 18: (a) domain and boundary conditions, and finite
element mesh for (b) 𝜆 = 0.5𝐷, (c) 𝜆 = 0.2𝐷, and (d) 𝜆 = 0.0𝐷.

to 𝑙0 = 𝐷∕100 in the numerical simulations, where 𝐷 is the depth of the beam. Plane stress state is assumed for all the problems. The
problems are crack mouth opening displacement (CMOD) controlled and when the beam is unnotched, the relative displacement
between two points symmetrically located at a distance of 𝐷∕2 from the mid-span is used in lieu of the CMOD.

First, we discuss the case when the load and the notch are at the mid span (see Fig. 17a). The results of the models are contrasted
against the data reported in Grégoire et al. (2013). As depicted in Fig. 17a, the tests consist of four different sizes of geometrically
similar specimens with a span-to depth ratio of 2.5 with a depth 𝐷 varying between 50 and 400 mm and a constant out-of-plane
thickness of 50 mm. Three different notch-to-depth ratios are considered: 0, 0.2, and 0.5 (i.e., 𝜆 = 0𝐷, 0.2𝐷, and 0.5𝐷, respectively,
as shown in Fig. 17a), with a constant notch width of 2 mm.

The beams are discretized using linear triangular elements with a refinement in the critical zone so that the effective element
size in this zone is ℎ ≈ 𝑙0∕10 (Fig. 17b-d). The beams are made of concrete with Young’s modulus, 𝐸0 = 3.7 × 104 MPa, Poisson’s
ratio, 𝜈 = 0.2, fracture energy, 𝜙𝑛 = 0.10 N/mm, cohesive strength, 𝜎max = 3.9 MPa (Grégoire et al., 2013), and shape parameter,
𝛼 = 4. For this configuration, we use calibrated fractured parameters corresponding to 80% of the cohesive strength and 90% of
the fracture energy reported by Grégoire et al. (2013). A constant displacement increment of 𝛥u𝑦 = 0.5 × 10−4 mm is used in all the
simulations.

Fig. 18 (left) shows the crack paths obtained with the regularized PPR model, which are vertical crack paths (as expected).
Fig. 18 (right) compares the numerical load–CMOD responses obtained with the regularized PPR model and the original PPR model
against those measured experimentally by Grégoire et al. (2013). As can be observed, the regularized PPR model and the original
PPR model are able to approximate (to a certain degree of accuracy) both the post-peak softening regimes as well as the size and
boundary effects affecting the peak loads.

6.8. Size effect analysis of eccentrically notched beams

In this example, we investigate the size effect under the transition from mode-I fracture to mixed-mode fracture by means of
three-point bending tests conducted on eccentrically notched concrete beams (Fig. 17a). The numerical results are contrasted against
those reported in García-Álvarez et al. (2012). Unlike the case studied in the previous example, for this new configuration either
mode-I fracture or mixed-mode fracture is observed. The tests consist of three different sizes of geometrically similar specimens
with a span-to-depth ratio of 2.5, a depth varying between 80 and 320 mm, and a constant out-of-plane thickness of 50 mm. The
notch-to-depth ratio is fixed to 0.25 (i.e., 𝑎 = 0.25𝐷, as shown in Fig. 19a), and the eccentricity-to-depth ratio, 𝑒, is variable, while
the notch width is kept constant (see Fig. 19a).

The beams are discretized using linear triangular elements with a refinement in the critical zone so that the effective element
size in this zone is ℎ ≈ 𝑙 ∕10 (Fig. 19b-d). The beams are made of concrete with Young’s modulus, 𝐸 = 3.38 × 104 MPa, Poisson’s
21
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Fig. 18. Numerical vs. experimental results for the notched and unnotched beams from Fig. 17. Phase-field crack path (left) and load vs. CMOD curves (right)
for: (a) 𝜆 = 0.5𝐷, (b) 𝜆 = 0.2𝐷, and (c) 𝜆 = 0𝐷.

ratio, 𝜈 = 0.2, fracture energy, 𝜙𝑛 = 0.08 N/mm, cohesive strength, 𝜎max = 3.5 MPa (Feng and Wu, 2018), and shape parameter,
𝛼 = 4. For this configuration, we use calibrated fracture parameters corresponding to 90% of the cohesive strength and 90% of
the fracture energy from García-Álvarez et al. (2012). A constant displacement increment of 𝛥u𝑦 = 0.5 × 10−4 mm is used in all the
simulations.

Fig. 20 (left) shows the resulting crack paths for the three beams and Fig. 20 (rigth) compares the numerical results obtained
with the regularized PPR model against the experimental results reported by García-Álvarez et al. (2012). As can be observed, the
agreement of the peak loads and post-peak softening regimes with a single set of material parameters is acceptable. Although the
peak loads for mixed-mode are over-estimated somewhat when 𝐷 = 320 mm and slightly underestimated when 𝐷 = 80 mm or
𝐷 = 160 mm the difference among the results is deemed acceptable. It is also observed from Fig. 20 that the obtained numerical
crack paths are consistent with the range of possible crack paths reported experimentally by García-Álvarez et al. (2012). These
observations highlight the ability of the regularized PPR model to capture boundary and size effects under mixed-mode loading.

7. Summary and conclusions

In this work, we recast the extrinsic PPR cohesive fracture model (Park et al., 2009) within the framework of the phase-field
method for quasi-brittle fracture introduced by Wu (2017). This phase-field formulation, which we refer to as the regularized PPR
model, can reproduce cohesive softening responses of arbitrary shape (e.g., convex, concave, or linear) by means of a shape parameter
inherited from the extrinsic PPR model. To achieve the desired softening response, we use a quadratic geometric function (which
is amenable to phase-field formulations for quasi-brittle fracture) and a rational degradation function defined in terms of five
parameters which are calibrated to reproduce the PPR softening responses.
22



Journal of the Mechanics and Physics of Solids 182 (2024) 105460R.A. Muñetón-López and O. Giraldo-Londoño
Fig. 19. Eccentrically notched beams under three-point bending used to obtain the results shown in Fig. 20: (a) domain and boundary conditions, and finite
element mesh for (b) 𝑒 = 0, (c) 𝑒 = 0.3125𝐷, and (d) 𝑒 = 0.625𝐷.

Illustrated with several numerical examples, we demonstrate that the regularized PPR model converges to the original PPR model
as the internal length scale parameter becomes small. Moreover, we show that the crack paths and load–deflection curves predicted
by the regularized PPR model are in good agreement with experimental results found in the literature. Similarly, we show that
the load–deflection curves predicted by the regularized PPR model approach those predicted by the original PPR model for cases
where the crack paths are known a priori. To the best of our knowledge, this is the first work in the literature where arbitrary CZM
softening responses can be reproduced by a phase-field model.

Although the regularized PPR model was derived considering mode-I fracture only, the numerical results presented here suggest
its efficacy for simulating mixed-mode fracture. Nonetheless, and extension of the regularized PPR model that accounts for mixed-
mode fracture is needed to capture different fracture energies in modes I and II. Although such an extension is part of our future
work, it is out of the scope of the present study.
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Fig. 20. Numerical vs. experimental results for the eccentrically notched beams from Fig. 19. Phase-field crack path (left) and load vs. CMOD curves (right)
for: (a) 𝑒 = 0, (b) 𝑒 = 0.3125𝐷, (c) 𝑒 = 0.625𝐷.

Appendix. Nomenclature

𝐸0 Young’s modulus of solid material
𝑇𝑛 Normal cohesive traction
𝑌 Thermodynamic force that drives the evolution of the phase-field
U Internal potential energy
W ext External potential energy
𝑈 Regularized internal potential energy
𝑎1 Calibration parameter for the degradation function related to the material properties
𝑎2 Calibration parameter for the degradation function related to the initial slope of a traction–separation law
𝑎3 Calibration parameter for the degradation function related to the final crack opening of a

traction–separation law
𝑎4 Calibration parameter related to the shape parameter 𝛼
𝑐0 Scaling parameter of the crack surface density function
𝑑 Phase-field
𝑓𝑐 Uniaxial compressive strength
𝑓𝑡 Uniaxial tensile strength
𝑔(𝑑) Degradation function
𝑘0 Initial slope of a traction–separation curve
𝑙0 Length scale parameter
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𝑝 Exponent for the degradation function
𝛥(⋅) Laplacian operator i.e., 𝛥𝑑 = ∇ ⋅ ∇𝑑
𝛥𝑛 Normal crack opening displacement
𝛥𝑡 Tangential crack opening displacement
𝛤 Discrete crack surface
𝛤𝑑 Regularized crack surface
𝛤𝑛 Energy constant for mode-I (PPR model)
𝛤𝑡 Energy constant for mode-II (PPR model)
𝛺 Domain
𝛱 Total potential energy
𝛹 (𝛥𝑛, 𝛥𝑡) Extrinsic PPR potential
𝛼 Shape parameter for mode-I fracture
�̄�eq Equivalent effective stress tensor
ψ̄ Critical energy to obtain a zero phase-field
ψ̄0 Modified initial strain energy density in terms of the equivalent effective stress
𝛽𝑐 Dimensionless constant
𝛽 Shape parameter for mode-II tractions
𝛿𝑛 Final crack opening of a traction–separation law for mode-I
𝛿𝑠 Dirac-delta function
𝛿𝑡 Final crack opening of a traction–separation law for mode-II
𝛾 Crack surface density function
E0 Elastic stiffness tensor
 Effective crack driving force
H Local history field of maximum strain energy
∇(⋅) Gradient operator
𝜈 Poisson’s ratio
𝜔(𝑑) Crack function
𝜕𝛺𝑡 Portion of the boundary where tractions are applied
𝜕𝛺𝑢 Portion of the boundary where the system is supported
𝜙𝑛 Mode-I fracture energy
𝜙𝑡 Mode-II fracture energy
𝜎max Cohesive strength
ψ0 Initial strain energy density for an isotropic elastic body
ψbulk Degrading strain energy density in the bulk
�̃� Regularized total potential energy
𝜉 Non-negative scalar parameter for geometric function
𝐽2 Second invariant of the deviatoric stress tensor
B𝑑 Gradient operator for the phase-field
Bu Strain–displacement matrix for the displacement field
D Material tangent matrix
Fext
u External force vector for the displacement field
Fint
u Internal force vector for the displacement field
Fext
𝑑 External force vector for the phase-field
Fint
𝑑 Internal force vector for the phase-field
Ku Global stiffness matrix for the displacement field
K𝑑 Global tangent matrix for the phase-field
N𝑑 Interpolating shape function for the phase-field
Nu Interpolating shape function for the displacement field
u𝑒 Element displacement vector
d𝑒 Element phase-field vector
f Distributed body force
k𝑒u Element stiffness matrix for the displacement field
k𝑒𝑑 Element tangent matrix for the phase-field
n Outward unit normal vector to the boundary of the domain
t Prescribed surface tractions
u(𝒙) Displacement field
�̄� Effective stress tensor
�̄�1 Maximum principal value of the effective stress tensor
𝝈 Cauchy stress tensor
𝛆(𝒙) Infinitesimal strain tensor
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