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Abstract Rate-dependent fracture has been exten-
sively studied using cohesive zone models (CZMs).
Some of them use classical viscoelastic material mod-
els based on springs and dashpots. However, such vis-
coelastic models, characterized by relaxation functions
with exponential decay, are inadequate to simulate frac-
ture for a wide range of loading rates. To improve
the accuracy of existing models, this work presents a
mixed-mode rate-dependent CZM that combines the
features of the Park–Paulino–Roesler (PPR) cohesive
model and a fractional viscoelastic model. This type
of viscoelastic model uses differential operators of
non-integer order, leading to power-law-type relaxation
functions with algebraic decay. We derive the model in
the context of damage mechanics, such that undam-
aged viscoelastic tractions obtained from a fractional
viscoelasticmodel are scaled using two damage param-
eters. We obtain these parameters from the PPR cohe-
sive model and enforce them to increase monotoni-
cally during the entire loading history, which avoids
artificial self-healing. We present three examples, two

O. Giraldo-Londoño · G. H. Paulino (B)
School of Civil and Environmental Engineering, Georgia
Institute of Technology, Atlanta, GA, USA
e-mail: paulino@gatech.edu

W. G. Buttlar
School of Civil and Environmental Engineering, University of
Missouri, Columbia, MO, USA

used for validation purposes and one to elucidate the
physical meaning of the fractional differential opera-
tors. We show that the model is able to predict rate-
dependent fracture process of rubber-like materials for
awide range of loading rates and that it can capture rate-
dependent mixed-mode fracture processes accurately.
Results from the last example indicate that the order of
the fractional differential operators acts as a memory-
like parameter that allows for the fracture modeling of
long- and short-term memory processes. The ability of
fractional viscoelastic models to model this type of pro-
cess suggests that relaxation functions with algebraic
decay lead to accurate fracture modeling of materials
for a wide range of loading rates.

Keywords PPR cohesive zone model · Fractional
viscoelasticity · Fractional calculus · Fractional
differential equations · Rate-dependent fracture ·
Damage mechanics · Fracture mechanics

1 Introduction

The fracture process in many materials is inherently
rate-dependent. This rate dependence is due to either
bulk-material viscoelasticity, the bond-breakage pro-
cess in front of the crack tip, or a combination (Bažant
and Li 1997). Understanding the underlying mech-
anisms that produce rate dependence in the fracture
process is of importance in several industries, includ-
ing automotive, aeronautical, and civil, among others.
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2 O. Giraldo-Londoño et al.

For example, the fracturing process of structural adhe-
sives in the automotive industry exhibits rate depen-
dency (Marzi et al. 2009a, b; May et al. 2015), and thus
such phenomenon must be accounted for in the design
of those adhesives. Likewise, fracture in bituminous
materials, such as asphalt concrete, is rate dependent
(Kim et al. 2009). Despite extensive previous research
in this area, the processes governing rate-dependent
fracture are still not fully understood, and thus we rec-
ognize the need to perform more studies pertaining to
this subject.

Studies conducted in the 1960s and 1970s explored
rate-dependence of fracture (Williams 1963, 1965;
Knauss 1970; Mueller and Knauss 1971; Maugis
and Barquins 1978). Many of those studies, although
important for explaining some of the mechanisms that
govern rate-dependence of fracture, mainly focused on
simple geometries and considered a small fracture pro-
cess zone (FPZ). Those approaches are not suitable to
solve problems involving more complex geometries or
loading conditions or problems in which the size of
the FPZ is significant. To solve more complex prob-
lems, alternative approaches such as cohesive zone
models (CZMs) are desirable because they can sim-
ulate nonlinear material separation and a large fracture
process zone (Park and Paulino 2011). Several rate-
independent CZMs have been proposed that assume
potential functions based on specific-degree polyno-
mials (Needleman 1987; Freed and Banks-Sills 2008)
or exponential-based functions (Needleman 1990a, b;
Xu and Needleman 1993). In these models, the shape
of the softening portion of the cohesive relationship
cannot be easily modified. Several studies, however,
have shown that the shape of the softening portion of
the CZM significantly affects the simulated fracture
behavior (Volokh 2004; Alfano 2006), which indicates
that fracture simulations require a model capable of
controlling the softening shape of the CZM.

To address the limitations of existing CZMs, this
study uses the Park–Paulino–Roesler (PPR) potential-
based CZM (Park et al. 2009; Park and Paulino 2012).
The PPR model is a potential-based model of general
polynomial order able to control the shape of the soft-
ening portion of the traction–separation relationships in
both the normal and tangential directions. The ability to
control the softening shape of the traction–separation
relations allows thePPRmodel to simulate awide range
of failure responses (e.g., quasi-brittle). In addition to
have the ability to control the softening shape of the

traction–separation curves, the PPR model can consis-
tently handle different fracture energies and cohesive
strengths in modes I and II, which is essential to model
mixed-mode fracture (Park et al. 2009).

The original PPR cohesive zone model, as well
as many other CZMs, is not able to simulate rate-
dependent fracture in its primary form. However,
with some additional considerations, rate-independent
CZMs can be used to simulate rate-dependent frac-
ture phenomena. For example, a study by Corigliano
et al. (2003) investigated the rate-dependent debonding
process in composite materials using an exponential-
type cohesive model. They enhanced the exponen-
tial CZM with a dimensionless interface parameter
that was a function of the crack opening velocity.
Alternatively, Zhou et al. (2005) used a phenomeno-
logical CZM to study dynamic crack propagation of
pre-strained PMMA plates. Using a bilinear traction–
separation relationship, they constructed a cohesive
model in which the final crack opening width (i.e., the
crack opening width in which tractions vanish) was a
function of the crack tip velocity. They chose this func-
tion such that the fracture energy increased exponen-
tially as the crack tip velocity increasedwhile assuming
that the cohesive strength remained constant. In con-
trast,Marzi et al. (2009a) incorporated rate-dependence
into their CZM through phenomenological expressions
for peak traction and critical energy release rate. They
constructed these expressions based upon experimen-
tal observations from tapered double cantilever beam
tests subjected to various applied loading rates.

Other phenomenological models have been reported
in the literature and are of interest in the present inves-
tigation. For instance, to address the rate-dependent
mixed-mode crack propagation of epoxy adhesives,
Makhecha et al. (2009) presented two cohesive models
based onperturbations of an exponential function. They
constructed the models based on experimental obser-
vations of mode I fracture tests performed on compact
tension specimens. To simulate the high-speed frac-
ture behavior of a steel alloy, Valoroso et al. (2014)
used a cohesive element in which rate dependence was
captured through an amplification function of the crit-
ical energy release rate. May et al. (2015) developed a
mixed-mode rate-dependent cohesive zone model that
incorporated their experimental results on both tapered
double cantilever beam (TDCB) and tapered end-
notched beam bonded with a crash-optimized adhe-
sive. The experiments showed that, as the crack open-
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Fractional calculus derivation of a rate-dependent PPR-based cohesive fracture model 3

ing rate increased, fracture toughness and cohesive
strength in both the normal and tangential directions
also increased. Their model represented both the frac-
ture energy and cohesive strengths with phenomeno-
logical expressions in terms of the crack opening rate.

The rate-dependent CZMs discussed above are typ-
ically derived from a rate-independent CZM by defin-
ing their fracture energy, cohesive strength, and/or
final crack opening as a function of the crack open-
ing rate. Therefore, those models may neglect some
physical processes related to rate-dependent fracture.
Other models account for physical processes, such that
the FPZ is modeled as a viscoelastic media. For exam-
ple, some models assume that the FPZ consists of vis-
coelastic fibrils that becomedamagedover time (Rahul-
Kumar et al. 1999; Allen and Searcy 2001) and others
assume that FPZ is represented by nonlinear softening
springs and dashpots (Xu et al. 2003a, b). They con-
structed amode I rate-dependentCZMby replacing one
of the springs of a standard linear solid (SLS) model
with a nonlinear softening spring, whose traction–
separation behavior followed an exponential function.
Although theirmodel was able to fit the obtained exper-
imental results, it predicts infinite fracture energy as
the opening rate approaches infinity. Using a similar
approach, Musto and Alfano (2013) studied the rate-
dependent debonding process in a double cantilever
beam (DCB) bonded by an interface of SBR/NR-blend
rubber. They developed their model using concepts
from both linear viscoelasticity and damage mechan-
ics by first obtaining normal tractions from an SLS
model, and then scaling themusing a damage-type vari-
able consistent with a rate-independent bilinear CZM
in mode I. However, their numerical results were not in
good agreement with experimental data obtained from
DCB tests performed at various loading rates (Musto
and Alfano 2013).

The studies discussed above use classical viscoelas-
ticmodels that consist of springs and dashpots, and thus
they have limited ability to predict the fracture behav-
ior for a wide range of loading rates. Recently, Musto
and Alfano (2015) proposed a rate-dependent CZM
using fractional viscoelastic theory (Mainardi 2010).
Similarly to their previous work (Musto and Alfano
2013), they used an SLS model, but instead of using
a dashpot in the Maxwell arm, they used a more gen-
eral element whose constitutive relationship is defined
in terms of differential operators of non-integer order
(Mainardi 2010). This generalized element, typically

called springpot, can interpolate between a spring and
a dashpot. In contrast to their earlier work (Musto and
Alfano 2013), results using the fractional viscoelastic
model (Musto and Alfano 2015) closely matched the
results of experiments performed on DCB test speci-
mens.

It is not surprising that the new cohesive zone model
presented by Musto and Alfano (2015) is able to cap-
ture the fracture response of an elastomeric material for
a wide range of loading rates. That is because rheolog-
ical models of fractional order, compared to classical
viscoelastic models, are able to describe more com-
plex viscoelastic behavior. In particular, fractional vis-
coelasticmodels are able tomodel both short- and long-
term hereditary phenomena, which is possible because
these models are characterized by relaxation func-
tions of algebraic decay instead of exponential decay1

(Mainardi 2010), which is consistent with observations
made for several materials (e.g., see Kapnistos et al.
2008; Olard and Di Benedetto 2003; Davis et al. 2006,
to name a few). As discussed in the subsequent section,
viscoelastic models of fractional order have success-
fully been used to represent the viscoelastic behavior of
several materials such as asphalt, polymers, biological
tissue, among others. These attributes have motivated
us to use a fractional viscoelasticmodel to represent the
rate-dependent response of our mixed-mode cohesive
element.

In this study, we combine the features of both the
PPRpotential fracturemodel and a fractional viscoelas-
ticmodel to derive a rate-dependentmixed-modeCZM.
We develop the cohesive fracture model in the context
of damagemechanics. First, we obtain undamaged nor-
mal and tangential tractions from a mixed-mode frac-
tional SLS model and scale them with two scalar dam-
age parameters that we obtain from the mixed-mode
PPR cohesive fracture model by Park et al. (2009).
Unlike previous studies that only consider mode I frac-
ture (Musto and Alfano 2015), the present model is
able simulate the rate-dependent bond-breakage pro-
cess in front of the crack tip under mixed-mode condi-
tions. Using the presentmodel, we are also able tomod-
ify the shape of the softening portion of the traction–
separation curves through two shape parameters and
to consider different fracture energies and cohesive
strengths in modes I and II consistently.

1 Relaxation functions of algebraic decay are ubiquitous in clas-
sical viscoelastic models that are based on springs and dashpots.
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Another novelty of the present formulation is a
method that we introduce to compute the fractional
derivatives, which allows for a variable time step. In
contrast to traditional methods for numerical compu-
tation of fractional derivatives (e.g., see Musto and
Alfano 2015; Schmidt and Gaul 2002), our ability
to use a variable time step facilitates implementation
of our rate-dependent CZM into into a finite element
(FE) code that uses variable time stepping algorithms.
The results from our model resemble experimentally
observed results from both mode I and mixed-mode
fracture tests and provide insight regarding meaning
and implications of fractional differential operators in
rate-dependent fracture analysis. The framework pre-
sented in this study can be used to extend existing
rate-independent mixed-mode CZMs to capture rate-
dependent fracture processes.

The remainder of this paper is organized as fol-
lows. First, Sect. 2 provides some theoretical back-
ground of fractional calculus and fractional viscoelas-
ticity, and shows that fractional viscoelastic models
lead to power-like relaxation functions, typical of long-
term hereditary phenomena. Section 3 presents details
of the formulation of the mixed-mode rate-dependent
CZM. Section 4 presents three comprehensive exam-
ples, and Sect. 5 provides some concluding remarks.
Three appendices complement the manuscript.

2 Preliminary theoretical considerations

This section describes some of the main concepts
related to fractional calculus and their application
to fractional viscoelasticity. First, we review the
Riemann–Liouville fractional integral and use it to
obtain the Caputo fractional derivative. Then, we
discuss the numerical solution of the Caputo
fractional derivative, followed by applications of
fractional calculus in viscoelasticity. Finally, we use
fractional viscoelasticity to generalize the standard
linear solid model, typically used in viscoelasticity.
For additional details about fractional calculus and/or
fractional viscoelasticity, we refer the interested read-
ers to Oldham and Spanier (1974), Miller and Ross
(1993), Podlubny (1998), Mainardi (2010).

2.1 Basic concepts of fractional calculus

Consider the Cauchy formula for repeated integration
shown below:

0 I
n
t f (t) =

∫ t

0

∫ τ1

0
· · ·

∫ τn−1

0
f (τn)dτn · · · dτ1

= 1

(n − 1)!
∫ t

0
(t − τ)n−1 f (τ )dτ. (1)

This formula represents the nth repeated integral of the
function f(τ ), τ ∈ (0, t). For notation purposes, we use
the left subscript, 0, and right subscript, t , to indicate
that the lower and upper limits of the integral above
are τ = 0 and τ = t , respectively, and thus this nota-
tion is used in all equations hereafter. We can extend
Cauchy’s formula from positive integer values of n to
any positive real value v̂ by substituting (n − 1)! with
�(v̂) in Eq. (1), inwhich�(·) denotes theGamma func-
tion. This substitution leads to the so-called Riemann–
Liouville fractional integral of order v̂ > 0,

0 I
v̂
t f (t) = 1

�(v̂)

∫ t

0
(t − τ)v̂−1 f (τ )dτ,

t > 0, v̂ > 0. (2)

By construction, when v̂ = n ∈ N, where N is
the set of natural numbers, the Riemann–Liouville
fractional integral reduces to the Cauchy formula for
repeated integration. This definition of a fractional inte-
gral allows us to obtain differential operators of frac-
tional order (Mainardi 2010).

One of these differential operators is the Caputo
fractional derivative of order v̂ > 0, which is obtained
by applying the Riemann–Liouville integral operator
of order (m − v̂) to the integer derivative of order m
of a function f (t), where m − 1 < v̂ < m, m ∈ N,
leading to

0D
v̂
t f (t) = 0 I

m−v̂
t ◦ Dm

t f (t)

=

⎧⎪⎪⎨
⎪⎪⎩

1

�(m − v̂)

∫ t

0

f (m)(τ )

(t − τ)v̂+1−m
dτ if m − 1 < v̂ < m, m ∈ N

dv̂ f (t)

dt v̂
if v̂ ∈ N

.

(3)

The superscript v̂ in 0 I v̂
t f (t) (Eq. 2) and 0Dv̂

t f (t)
(Eq. 3) represents the order of the fractional integral
and fractional derivative, respectively. Note that when
v̂ /∈ N, the Caputo fractional differential operator
shown in Eq. (3) (as well as other fractional differential
operators) becomes non-local because it depends on the
behavior of f (τ ) for τ ∈ [0, t]. In the next subsection,
we show different methods used to compute the Caputo
fractional derivative and discuss the method adopted in
this study.
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2.2 Numerical approximation of the Caputo fractional
derivative

We present several numerical methods used to evaluate
fractional differential operators and fractional differen-
tial equations followed by a numerical scheme that we
introduce to solve the Caputo fractional derivative. The
introduced numerical scheme allows for variable step,
which is suitable for implementation in a finite element
code using variable time-stepping algorithms. Several
algorithms have been proposed to evaluate fractional
derivatives and to solve fractional differential equa-
tions. Diethelm et al. (2002) introduced a predictor-
corrector approach that aims to solve a fractional dif-
ferential equation of the form Dv̂

t y(t) = f (t, y(t)).
Additional numerical techniques to solve fractional dif-
ferential equations and to evaluate fractional deriva-
tives is presented by Diethelm et al. (2005). To eval-
uate the Caputo fractional derivative based on mea-
sured data with noise, Murio (2006) presented a regu-
larization technique that leads to a stable evaluation of
such derivative. Krishnasamy et al. (2017) presented
a methodology to solve fractional differential equa-
tions that is based on fractional Taylor basis approx-
imations.

The numerical approaches described above typi-
cally use a constant time step to evaluate the fractional
derivatives. Here, we present an approach that allows
us to use a variable time step to evaluate the Caputo
derivative of order v̂ ∈ (0, 1). Consider the following
Caputo fractional derivative of order v̂ ∈ (0, 1) of a
function f (t) evaluated at t = tN ,

0D
v̂
t f (tN ) = 1

�(1 − v̂)

∫ tN

0

ḟ (τ )

(tN − τ)v̂
dτ, 0 < v̂ < 1. (4)

To find an approximate expression for this fractional
derivative, we first divide the time interval (0, tN ) into
N segments, which need not be equally spaced, as
shown in Fig. 1.

t0 = 0 t1 t2 t3 t4 t5 tN−1 t
t

N

Fig. 1 Time discretization used to evaluate the Caputo fractional
derivative in Eq. (4). In contrast to the constant time step required
in theGrünwald–Letnikov fractional derivative (Uchaikin 2013),
our method employs a variable time step (see “Appendix A”)

Next, we approximate ḟ (τ ) in each time interval
(t j−1, t j ), j = 1, . . . , N , with its backward finite
difference approximation, and substitute it into Eq. (4),
which leads to the following sumof piecewise integrals:

0D
v̂
t f (tN ) ≈ 1

�(1 − v̂)

N∑
j=1

f (t j ) − f (t j−1)

t j − t j−1

∫ t j

t j−1

(tN − τ)−v̂dτ. (5)

After some algebraic maneuvering, Eq. (5) is rewritten
as

0D
v̂
t f (tN ) ≈ f (tN ) − S f

�(2 − v̂)�t v̂N
, (6)

where

S f = f (tN−1) +
N−1∑
j=1

[
f (t j ) − f (t j−1)

]
A j ,

A j = (tN − t j )1−v̂ − (tN − t j−1)
1−v̂

(t j − t j−1)�t−v̂
N

,

�tN = tN − tN−1. (7)

“Appendix A” presents a detailed assessment of the
numerical scheme discussed above, which we use to
estimate the Caputo fractional derivative of a function
f (t).

2.3 Fractional calculus and viscoelasticity

Here, we show the relationship between the Caputo
fractional derivative and the behavior of linearly vis-
coelastic materials with long-term memory, such as
polymers. The relaxation behavior of polymers is nat-
urally described by power-law type relaxation func-
tions over a wide range of frequencies (Rubinstein and
Obukhov 1993; Kapnistos et al. 2008; Knauss et al.
2008; Milner and Newhall 2010; Uchaikin 2013). In
its simplest form, a relaxation function of this type can
be defined as

G(t) = a

�(1 − v̂)
t−v̂ , 0 < v̂ < 1, t > 0, (8)

where a/�(1 − v̂) is a constant measuring the “rigid-
ity” of the material, and v̂ is a relaxation parameter.
In contrast to relaxation functions based on exponen-
tial kernels, a power-law relaxation function under-
goes algebraic decay, which we can use to represent
materials with long-term memory. From Eq. (8), the
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stress–strain relationship for this type of material is
given by

σ(t) =
∫ t

0
G(t − τ)ε̇(τ )dτ = a

�(1 − v̂)∫ t

0
(t − τ)−v̂ ε̇(τ )dτ, 0 < v̂ < 1, t > 0, (9)

where ε(τ ), τ ∈ [0, t] is the strain history up to time t .
Without loss of generality, we consider only the one-
dimensional case (Padovan 1987; Schmidt and Gaul
2002).

Comparing Eqs. (3) and (9), one can observe that
the stress, σ(t), for a material following a power-law
type relaxation function such as that in Eq. (8) can be
written in terms of a Caputo fractional derivative with
exponent v̂ ∈ (0, 1) (i.e., using m = 1 in Eq. (3)) as
follows:

σ(t) = a 0D
v̂
t ε(t), (10)

where

0D
v̂
t ε(t) = 1

�(1 − v̂)

∫ t

0

ε̇(τ )

(t − τ)v̂
dτ, 0 < v̂ < 1.

(11)

Therefore, we can use a stress–strain relationship
based on Caputo fractional differential operators to
model viscoelastic materials with long-term memory.
A constitutive equation of the form shown in Eq. (10)
was introduced by Scott-Blair (1947) to describe a
viscoelastic material with behavior between that of
a Hookean solid and that of a Newtonian fluid. In
fact, Eq. (10) represents the behavior of a Hookean
solid when v̂ → 0, and a Newtonian fluid when
v̂ → 1. The material represented by Eq. (10) gives
rise to the more general element known as spring-
pot (Mainardi 2010). As depicted in Fig. 2, a spring-
pot can be used to represent either a spring or a
dashpot, depending on the order of the fractional
derivative.

Several studies have shown that a springpot can be
represented as an infinite series of springs and dash-
pots arranged in a hierarchical manner (Schiessel and
Blumen 1993; Schiessel et al. 1994, 1995; Schiessel
and Blumen 1995). The hierarchical representation of
a springpot explains why, as compared to classical vis-
coelastic models, those of fractional order can simulate
complex viscoelastic responses using a small amount
of parameters. A springpot can be used to generalize

Spring DashpotSpringpot
(v̂ = 0) (0 < v̂ < 1) (v̂ = 1)

η̂ η̂η̂, v̂

σ = η̂ε σ = η̂ε̇σ = η̂ 0D
v̂
t ε

Fig. 2 Stress–strain relationships represented by a springpot.
When v̂ → 0, a springpot takes the form of a standard spring,
and when v̂ → 1 the springpot takes the form of a standard
dashpot

classical viscoelastic models such as Maxwell, Voigt,
and Zener (or SLS) models. The generalization can be
achieved by substituting the dashpots (found in clas-
sical models) with springpots (Mainardi 2010). These
types of rheological models have been used to accu-
rately simulate the behavior (in frequency domain)
of asphalt (Olard and Di Benedetto 2003), acous-
tical damping materials (Gourdon et al. 2015), and
polymers (Kontou and Katsourinis 2016). In studies
by Olard and Di Benedetto (2003), Gourdon et al.
(2015), the springpot is referred to as a parabolic
creep element. These types of models have also been
used to accurately represent the viscoelastic behavior
(in time domain) for biological tissue (Davis et al.
2006; Craiem et al. 2008; Dai et al. 2015), polymers
(Welch et al. 1999; Kapnistos et al. 2008), among
other materials. In this work, we use a fractional gen-
eralization of the SLS model because it demonstrates
promise as a tool for the realistic simulation of frac-
ture in rate-dependent materials (Musto and Alfano
2015).

2.4 Fractional SLS model

A schematic representation of a one-dimensional frac-
tional SLS model is illustrated on the top-right corner
of Fig. 3. Parameter η̂ is a viscosity-like quantity and
v̂ ∈ (0, 1) defines the order of the Caputo fractional
derivative. Both parameters η̂ and v̂ dictate the behav-
ior of the springpot. In addition, parameter E defines
the stiffness of the equilibrium spring (i.e., the lower
spring in the schematic of the fractional SLS model)
and parameter c controls the stiffness (cE) of the spring
in the fractionalMaxwell element (i.e., the upper spring
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Fig. 3 Relaxation modulus of a fractional SLS model for vari-
ous orders v̂ of the Caputo fractional derivative. For illustration
purposes, the relaxation functions shown here are obtained using
Eq. (12), with E = 1, c = 1, and η̂ = 1 (online version in color)

in the schematic of the fractional SLS model). When
ε̇ → 0 (slow limit), the stiffness of the fractional SLS
model is E , and when ε̇ → ∞ (fast limit), its stiffness
is (1 + c)E .

The viscoelastic response of the fractional SLS
model is characterized by its relaxationmodulus,which
is given as (Mainardi 2010)

G(t) = E
[
1 + cEv̂

(
−(t/τ̂ )v̂

)]
, (12)

where:

τ̂ = [
η̂/(cE)

]1/v̂ and Ev̂(t) =
∞∑
n=0

tn

�(v̂n + 1)
.

(13)

Here, Ev̂(t) is the Mittag-Leffler function (Mainardi
2010). The behavior of the relaxationmodulus given by
Eq. (12) is illustrated in Fig. 3 for several values of v̂.
Note that as v̂ increases, we observe more stress relax-
ation for t > τ̂ (materials with short-term memory),
and as v̂ decreases, we observe less relaxation for t > τ̂

(materialswith long-termmemory). Therefore, one can
conclude that, with the proper choice of v̂, a fractional
SLS model can simulate both materials with short- and
long-termmemory.Materialswith the shortestmemory
correspond to v̂ → 1, in which the relaxation function
from Eq. (12) reduces to the relaxation function for a
classical SLS model2, i.e., G(t) = E(1 + ce−t/τ̂ ).

2 To obtain the standard SLS expression from Eq. (12), we eval-
uate the Mittag-Leffler function for v̂ = 1, which reduces to

A study by Adolfsson et al. (2005) numerically
showed that to obtain the same relaxation function of
a fractional SLS model, a classical standard viscoelas-
tic model would need an infinite number of Maxwell
elements. This finding is another indication that a rhe-
ological model of fractional order, compared to a clas-
sical rheological model, can represent complex vis-
coelastic behavior for a wide range of frequencies (or
time) with fewer input parameters, which is one of the
reasons for adopting the fractional SLS model in our
formulation.

3 PPR-based rate-dependent CZM using
fractional calculus

We construct a new mixed-mode rate-dependent CZM
in the context of damage mechanics. We begin by
obtaining undamaged tractions Sk from a fractional
SLS model (Musto and Alfano 2015; Mainardi 2010)
and then scale them with two scalar damage-type
parameters dk extracted from the PPR cohesive zone
model by (Park et al. 2009). Here, subscript k takes
values k = n and k = t , which refer to quantities
evaluated in the normal and tangential directions to the
crack plane, respectively. We use the undamaged trac-
tions, Sk , and the damage parameters, dk , to obtain the
cohesive tractions,

Tk = (1 − dk) Sk, (k = n, t). (14)

The model can be visualized as two fractional SLS
models, each coupled in series with a damage element,
as illustrated in Fig. 4b. In the following subsection,
we present details of the derivation of the undamaged
tractions, Sk , which are obtained from the normal and
tangential fractional SLS models. Next, we elaborate
on the derivation of the damage parameters. Finally, we
present the final expressions for the proposed mixed-
mode rate-dependent cohesive tractions, Tk , and the
corresponding material tangent matrix.

3.1 Undamaged tractions Sk

To obtain the undamaged viscoelastic tractions in both
normal and tangential directions to the crack plane, we

the Taylor series expansion of the exponential function. That is,
Ev̂=1(t) = ∑∞

n=0
tn

�(n+1) = ∑∞
n=0

tn
n! = et .
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Fig. 4 Rheological representation of the mixed-model rate-
dependent CZM: a schematic illustration of two fractional SLS
models used to obtain the normal and tangential undamaged trac-

tions, Sn and St ; and b schematic illustration of two fractional
SLSmodels, each coupled in series with a damage element, used
to obtain the normal and tangential cohesive tractions, Tn and Tt .

use two fractional SLS models as those depicted in
Fig. 4a. We assume that in the undamaged stage, nor-
mal crack opening displacements produce only normal
tractions, and tangential crack opening displacements
produce only tangential tractions. In other words, we
assume no coupling between normal and tangential
tractions in the undamaged stage. To couple normal and
tangential cohesive tractions, we employ two damage
parameters, as we will discuss in detail in the following
subsection.
We obtain the undamaged viscoelastic tractions, Sk ,
from the solution of the fractional differential equa-
tions

Sk + λ̂k 0D
v̂
t Sk = Ek�k + γ̂k 0D

v̂
t �k, (k = n, t),

(15)

where:

λ̂k = η̂k/(cEk), and γ̂k = η̂k(1 + c)/c. (16)

To find a solution to Eq. (15), we approximate
the fractional derivatives numerically. If the fractional
derivatives are approximated using traditional meth-
ods, such as the Grünwald–Letnikov approximation
(Uchaikin 2013; Musto and Alfano 2015) which uses
a constant time step, we expect to encounter a mis-
match between the time step used to compute the frac-
tional derivative and that used in the finite element (FE)

model. The mismatch in time steps is more prominent
when simulating fracture because the FE model often
requires adaptive time-stepping algorithms. Because
of the mismatch between time steps, one needs to
interpolate between the FE model results at each load
step to approximate the fractional derivatives, which
introduces additional errors to the numerical solution.
For this reason, we approximate the fractional deriva-
tives using a method that allows for variable time step,
according to Sect. 2.2.

To solve the fractional differential equation (15), we
use the approximate expression for the Caputo frac-
tional derivative given in Eq. (6) to evaluate 0Dv̂

t Sk
and 0Dv̂

t �k . After some algebraic maneuvering, the
expression that we obtain for the undamaged tractions,
Sk , are3:

Sk(tN ) = Êk�k + �SH
k , (k = n, t), (17)

where

Êk =
(
1 + cλ̂k

λ̂k + �(2 − v̂)�t v̂N

)
Ek,

3 We can use an alternative model (e.g., see Giraldo-Londoño
et al. 2018) to estimate the rate-dependent undamaged tractions,
which requires no computation of fractional derivatives.
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Fractional calculus derivation of a rate-dependent PPR-based cohesive fracture model 9

�SH
k = λ̂k SSk − γ̂k S�k

λ̂k + �(2 − v̂)�t v̂N
, (18)

and

SSk = Sk (tN−1) +
N−1∑
j=1

[
Sk(t j ) − Sk(t j−1)

]
A j ,

S�k = �k (tN−1) +
N−1∑
j=1

[
�k(t j ) − �k(t j−1)

]
A j .

(19)

The terms �SH
k in Eq. (17) account for the history

of tractions and crack opening displacements between
t = 0 and t = tN−1.

3.2 Normal and tangential damage parameters dk

As illustrated by Fig. 4b, we adopt two damage param-
eters, dk , which we obtain from the PPR cohesive zone
model (Park et al. 2009) as conducted in a study by
Spring et al. (2016). The damage parameters, dk , are
computed as

dk (κn, κt ) = 1 − T̂k (κn, κt )

Ekκk
, (k = n, t), (20)

where T̂k(κn, κt ) are the normal and tangential cohesive
tractions from the rate-independent PPR cohesive zone
model (Park et al. 2009), which are given by

T̂n(κn, κt ) = �n

δn

[
m

(
1 − κn

δn

)α (
m

α
+ κn

δn

)m−1

−α

(
1 − κn

δn

)α−1 (
m

α
+ κn

δn

)m
]

×
[
�t

(
1 − κt

δt

)β (
n

β
+ κt

δt

)n

+ 〈φt − φn〉
]

,

(21)

T̂t (κn, κt ) = �t

δt

[
n

(
1 − κt

δt

)β (
n

β
+ κt

δt

)n−1

−β

(
1 − κt

δt

)β−1 (
n

β
+ κt

δt

)n
]

×
[
�n

(
1 − κn

δn

)α (
m

α
+ κn

δn

)m

+ 〈φn − φt 〉
]

.

(22)

As discussed by Spring et al. (2016), the damage
parameters in Eq. (20) and the cohesive tractions in
Eqs. (21) and (22) are functions of two kinematic quan-
tities, κn and κt . The first represents the maximum nor-
mal crack opening in the loading history, and the second
the maximum absolute tangential crack opening in the
loading history. These quantities satisfy the following
relations (Spring et al. 2016):

κ i+1
n = max

{
κ i
n,�

i+1
n

}
and

κ i+1
t = max

{
κ i
t ,

∣∣∣�i+1
t

∣∣∣
}

, (23)

where in the context of afinite element solution scheme,
the superscripts i and (i + 1) refer to the solutions at
time increments i and (i + 1), respectively.

We need to satisfy the relations in Eq. (23) to ensure
that the damage parameters monotonically increase
throughout the loading history (i.e., di+1

n ≥ din and
di+1
t ≥ dit ), which is consistent with the assump-
tion that no self-healing takes place during fracture.
We use Fig. 5 to illustrate the monotonicity condition
imposed on the damage parameters. The figure shows
typical normal and tangential PPR cohesive tractions
T̂k(κn, κt ) (Fig. 5a, b) and their corresponding damage
parameters dk(κn, κt ) (Fig. 5c, d). We observe that the
two damage parameters start at zero (when no damage
occurs), and monotonically increase to one as the kine-
matic quantities (κn, κt ) increase. When both the nor-
mal and tangential damage parameters approach one,
the rate-independent PPR cohesive tractions vanish,
indicating complete damage.

The terms Ek in Eq. (20) represent the PPR initial
stiffness in the normal and tangential directions, respec-
tively. These expressions were obtained in a study by
Spring et al. (2016) and are provided below:

En = −�n

δ2n

(m
α

)m−1
(m + α)

[
�t

(
n

β

)n

+ 〈φt − φn〉
]

,

Et = −�t

δ2t

(
n

β

)n−1

(n + β)
[
�n

(m
α

)m + 〈φn − φt 〉
]
.

(24)

The parameters α, β, m, n, �n , and �t , used in
Eqs. (21)–(21) and in Eq. (24), are the same as in the
PPR cohesive model (Park et al. 2009). Parameters α

and β, both greater than or equal to one, control the
softening shape of the traction–separation relationship
in the normal and tangential directions, respectively.
The softening portion of the traction–separation rela-
tionship is convex if α, β > 2 or concave if α, β < 2.
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10 O. Giraldo-Londoño et al.

Fig. 5 Typical
traction–separation
relationships from the PPR
cohesive model, and their
corresponding normal and
tangential damage
parameters: a normal
cohesive traction; b
tangential cohesive traction;
c damage parameter in the
normal direction; and d
damage parameter in the
tangential direction. For the
sake of illustration, the
cohesive parameters used
here are φn = 200 N/m,
φt = 400 N/m,
σmax = 40 MPa,
τmax = 30 MPa, α = 4,
β = 1.5, λn = 0.2, and
λt = 0.3
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Moreover, the softening behavior is nearly linear if α,
β = 2. Parameters m and n are functions of the shape
parameters α and β and two initial slope indicators, λn
and λt , as shown below:

m = α (α − 1) λ2n

1 − αλ2n
, n = β (β − 1) λ2t

1 − βλ2t
. (25)

The initial slope indicators correspond to the ratio
between the critical crack opening widths and the final
crack opening widths:

λn = δnc/δn, λt = δtc/δt , (26)

where the critical crack opening widths δnc and δtc cor-
respond to the crack opening at which the peak trac-
tions are reached in the normal and tangential direc-
tions, respectively. The final crack opening widths δn
and δt are obtained as

δn = φn

σmax
αλn(1 − λn)

α−1
( α

m
+ 1

) ( α

m
λn + 1

)m−1
,

δt = φt

τmax
βλt (1 − λt )

β−1
(

β

n
+ 1

) (
β

n
λt + 1

)n−1

.

(27)

Energy constants �n and �t are functions of the
normal and tangential fracture energies (i.e., φn and

φt ), respectively. According to Park et al. (2009), the
energy constants are

�n = (−φn)
〈φn−φt 〉/(φn−φt )

( α

m

)m
,

�t = (−φt )
〈φt−φn〉/(φt−φn)

(
β

n

)n

, (28)

when the normal and tangential fracture energies differ
(φn 
= φt ), and

�n = −φn

( α

m

)m
, �t =

(
β

n

)n

, (29)

when the normal and tangential fracture energies are the
same (φn = φt ). The bracket 〈·〉 in Eq. (28) corresponds
to theMacaulay bracket, 〈x〉 = 1

2 (x + |x |).

3.3 Rate-dependent cohesive tractions

We obtain the mixed-mode rate-dependent cohesive
tractions of the present study by substituting Eqs. (17)
and (20) into Eq. (14), which yields

Tk = T̂k (κn, κt )

Ekκk

(
Êk�k + �SH

k

)
, (k = n, t). (30)

123



Fractional calculus derivation of a rate-dependent PPR-based cohesive fracture model 11

Fig. 6 Typical behavior of
our rate-dependent cohesive
model for several prescribed
constant crack opening
rates: a normal cohesive
traction and b tangential
cohesive traction. The
representative parameters
used here are φn = 10 N/m,
φt = 20 N/m,
σmax = 4 MPa,
τmax = 3 MPa, α = 5,
β = 1.5, λn = 0.2,
λt = 0.2, c = 1, v̂ = 0.2,
and λ̂n = λ̂t = 1.3 sv̂
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Fig. 7 Fracture energy obtained for several prescribed constant crack opening rates: a mode I fracture energy; and b mode II fracture
energy. The model parameters that we used to obtain these figures are the same as those used to generate Fig. 6

As shown in Fig. 6, we illustrate our rate-dependent
cohesive model by plotting the normal and tangen-
tial cohesive tractions as functions of the crack open-
ing displacements for several constant crack opening
rates in pure modes I and II. The results show that the
cohesive tractions increase as the crack opening rate
increases. Increase in cohesive tractions as a function
of crack opening rate has been observed experimen-
tally in polyurea/steel interfaces (Zhu et al. 2009). In the
slow limit case (i.e., when �̇k → 0), themaximumnor-
mal and tangential cohesive tractions approach Tmax

n =
σmax = 4 MPa and Tmax

t = τmax = 3 MPa, respec-
tively. These peak tractions correspond to the nor-
mal and shear cohesive strengths that we adopted for
the rate-independent PPR cohesive model (Park et al.
2009), which dictates the behavior of the damage ele-
ment discussed in the previous subsection. For the fast

limit case (i.e., when �̇k → ∞) the normal and tan-
gential cohesive tractions approach Tmax

n = 8 MPa
and Tmax

t = 6 MPa, respectively, which correspond to
Tmax
n = (1+ c)σmax and Tmax

t = (1+ c)τmax, respec-
tively.

We use the results in Fig. 6 to obtain mode I and II
fracture energies for several constant prescribed nor-
mal and tangential crack opening rates, respectively.
Figure 7 shows the computed fracture energies versus
the crack opening rates. As one can observe in the fig-
ure, both mode I and II fracture energies grow in a sig-
moidal shape as the crack opening rates increase. For
the slow-limit case, the mode I and II fracture energies
approach φn = 10 N/m and φt = 20 N/m, respectively.
These are the fracture energies that we used to define
the damage element of the previous subsection. For
the fast-limit case, the mode I and II fracture energies
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12 O. Giraldo-Londoño et al.

approach (1 + c)φn and (1 + c)φt , respectively. Note
that, in contrast to previous studies that assume that the
fracture energies increase to infinity as the crack open-
ing rates increase, e.g., seeZhouet al. (2005), ourmodel
predicts finite fracture energies as the crack opening
rates approach infinity. This feature of our model is
integral to the representation of real materials. Besides
the aforementioned limit behaviors, we observe that
both mode I and II fracture energies increase exponen-
tially for a certain range of crack opening rates (linear
portions of Fig. 7a, b), which agrees with experimen-
tal observations in several studies (e.g., see Zhou et al.
2005; Rahul-Kumar et al. 1999).

The sigmoidal behavior of the mode I and II frac-
ture energies as a function of the loading rate is suit-
able to model elastomeric materials, but it is inade-
quate to model the behavior of glassy polymers, which
typically become more brittle as the crack opening
rate increases (e.g., see Williams 1972; Johnson and
Radon 1972; Maugis 1985; Webb and Aifantis 1995;
de Gennes 1996). The decrease in fracture energy with
increasing crack opening rate may be due to increas-
ing temperatures in the fracture process zone (Williams
1972; Johnson and Radon 1972). An alternative expla-
nation for this phenomenon was recently presented
by Alfano and Musto (2017). They indicated that if
the total elastic energy is considered as the thermo-
dynamic driving force for damage growth, one may
observe that the behavior of the fracture energy can be
non-monotonic, which is observed in glassy polymers.
Although such consideration could be incorporated, it
is out of the scope of the present study, and thus the
reader is directed to the aforementioned references.

We test the consistency of our model using the non-
proportional loading/unloading crack-opening path
shown in Fig. 8. In that path, theCZM is loaded inmode
I, then it is unloaded and finally is loaded in mode II
until complete failure occurs. The amount of loading
in mode I is chosen such that damage in the normal
direction is dn =96% (i.e., almost complete failure).
The cohesive tractions that we computed based on the
given crack-opening path are shown in Fig. 9. From
these results, we observe that, as we load and unload
in mode I (i.e., region A–B–C from Fig. 8), we obtain
an expected traction–separation curve. That is, the nor-
mal cohesive traction, Tn , increases until it reaches a
peak traction and then decreases (region A–B), which
is followed by a linear unloading (region B–C). Once
we start loading in mode II (point C), the tangential
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Fig. 8 Non-proportional crack-opening path used to verify the
consistency of the rate-dependent cohesive zone model. The
loading path consists of mode I loading (A–B), and then bymode
I unloading (B–C), followed by mode II loading (C–D)

cohesive tractions, Tt , also behave as expected until
complete failure occurs.

The evolution of damage parameters, dn and dt ,
that we obtain from the crack-opening path depicted
in Fig. 8 is illustrated in Fig. 10. The figure shows that
both normal and tangential damageparameters increase
in region A–B (for pure mode I loading), which is
expected because both normal and tangential damage
parameters are coupled through the kinematic quanti-
ties κn and κt—see Eq. (20). That is, loading in the nor-
mal direction affects the behavior of theCZMin the tan-
gential behavior and vice-versa. In addition, both dam-
age parameters remain constant in region B–C (unload-
ing), which is consistent with our assumption that no
self-healing is considered in the model. Once mode II
loading begins (point C), both normal and tangential
damage parameters increase monotonically until com-
plete failure occurs. Because at point C the tangential
damage parameter, dt , is close to one, the tangential
cohesive tractions predicted for the model are signifi-
cantly smaller than the rate independent shear cohesive
strength, τmax = 80 MPa, used to define the damage
element. This is an expected response in a physical sys-
tem in which both normal and tangential damage are
coupled.

3.4 Material tangent matrix and related remarks

To implement our model in a finite element software
such asABAQUS (2011), one needs to obtain themate-
rial tangent matrix. To obtain such matrix, we differen-
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Fractional calculus derivation of a rate-dependent PPR-based cohesive fracture model 13

Fig. 9 Cohesive tractions
in the a normal and b
tangential directions
obtained for the
non-proportional
crack-opening path of
Fig. 8. The CZM parameters
used here are
φn = 200 N/m,
φt = 900 N/m,
σmax = 40 MPa,
τmax = 80 MPa, α = 3,
β = 1.5, λn = 0.2,
λt = 0.3, c = 1, v̂ = 0.2,
and λ̂n = λ̂t = 1.5 sv̂
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Fig. 10 Evolution of normal and tangential damage parameters,
dn and dt , obtained for the non-proportional crack-opening path
of Fig. 8. The damage parameters are obtained from Eq. (20)
using the CZM parameters from Fig. 9

tiate the cohesive tractions, Tk , in Eq. (30), with respect
to the crack opening displacements,�k , which leads to

D(�n,�t ) =
[
Dtt Dtn

Dnt Dnn

]
, (31)

where

Dtt = ∂Tt
∂�t

= St
Etκt

[
D̂nn(κn, κt ) − T̂t (κn, κt )

κt

]

∂κt

∂�t
+ Êt T̂t (κn, κt )

Etκt
, (32)

Dtn = ∂Tt
∂�n

= St
Etκt

D̂tn(κn, κt )
∂κn

∂�n
, (33)

Dnt = ∂Tn
∂�t

= Sn
Enκn

D̂nt (κn, κt )
∂κt

∂�t
, (34)

Dnn = ∂Tn
∂�n

= Sn
Enκn

[
D̂tt (κn, κt ) − T̂n(κn, κt )

κn

]

∂κn

∂�n
+ Ên T̂n(κn, κt )

Enκn
. (35)

Parameters D̂tt , D̂tn , D̂nt , and D̂nn are the components
of the material tangent matrix for the rate-independent
PPR cohesive zonemodel Park and Paulino (2012), and
are shown in “Appendix B”.

We use the material tangent matrix D(�n,�t ) for
FE implementation purposes, and so we refer inter-
ested readers to Park and Paulino (2012) for a detailed
procedure regarding the FE implementation of a two-
dimensional linear cohesive element. Note that we
included all loading–unloading–reloading scenarios in
Eqs. (32)–(35) through the values of ∂κn/∂�n and
∂κt/∂�t , which we obtain from Eq. (23) as follows:

∂κn

∂�n
=

{
1 if �n = κn

0 if �n < κn
,

∂κt

∂�t
=

{
�t/ |�t | if |�t | = κt

0 if |�t | < κt
. (36)

Equations (36) show that the kinematic quantities κn
and κt only vary under pure loading conditions, but they
remain constant if unloading/reloading occurs. The val-
ues of ∂κn/∂�n and ∂κt/∂�t (which dictate the evo-
lution of κn and κt ) are illustrated in Fig. 11.

4 Examples and discussion

Here, we present and discuss three examples to test our
mixed-mode rate-dependent CZM. In the first example,
we validate our model by comparing numerical results
with those from rate-dependent DCB tests conducted
byMusto andAlfano (2015). In the second example,we
conduct a rate-dependent mixed-mode test on a com-
pact tension/shear (CTS) specimen and compare our
numerical results with experimental results obtained
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Fig. 11 Given the maximum normal and tangential crack open-
ing during the loading history (reference point), four possible
loading scenarios may occur. For pure loading (white region),
both ∂κn/∂�n = 1 and ∂κt/∂�t = 1; for partial unloading
(light gray regions), ∂κn/∂�n = 1 and ∂κt/∂�t = 0 when
�n > κn and �t < κt , and ∂κn/∂�n = 0 and ∂κt/∂�t = 1

when �n < κn and �t > κt ; and for pure unloading (dark gray
region), both ∂κn/∂�n = 0 and ∂κt/∂�t = 0. This illustration
shows only positive values of �t ; therefore, to account for both
positive and negative values of �t , the values of ∂κt/∂�t shown
here need to be multiplied by sign(�t )—adapted from Spring
et al. (2016)

by Liechti and Wu (2001). In the third example, we
perform a parametric analysis to investigate the effect
of the model parameters in the behavior of a fiber rein-
forced composite. We use the third example to eluci-
date the meaning of the order of the Caputo fractional
derivative and its relevance in rate-dependent fracture
simulations4.

4.1 Double cantilever beam test

In this example, we compare the numerical results
from our model to those from DCB tests performed at
various loading rates. We obtain the experimental
results from a study by Musto and Alfano (2015), who
performed several DCB tests with geometry and load
application points, as depicted in Fig. 12a. The geome-
try of the DCB tests consists of two steel arms partially
bonded with a styrene butadiene rubber interface. Each
steel arm is 8mm thick, 25mmwide, and 200mm long,
and the rubber interface is 1 mm thick, 120 mm long.
Musto and Alfano (2015) performed DCB debonding
tests at several prescribed constant cross-head displace-

4 To obtain the results shown in all the examples, we imple-
mented our rate-dependent CZM as a user-defined element
(UEL) subroutine in the commercial FE software ABAQUS
(2011).

ment rates ranging from 0.01, 0.1, 1, 10, 100, to 500
mm/min.

To compare our results to those of the experimental
data fromMusto and Alfano (2015), we created six FE
models, each of which corresponds to one of the pre-
scribed cross-head displacement rates. The mesh and
boundary conditions for each FE model are illustrated
in Fig. 12b. We impose a constant velocity boundary
condition at the load application points. Themagnitude
of the velocity imposed at these points corresponds to
each of the prescribed cross-head displacement rates in
the DCB tests.

In addition to mesh and boundary conditions, we
define material properties in our FE models. We model
the steel arms using a linear elastic material with
Young’s modulus of 200 GPa and Poisson’s ratio of
0.3. In addition,wemodel the rubber interface usingour
mixed-mode rate-dependent CZM and select an appro-
priate set of model parameters to match the experimen-
tal results by Musto and Alfano (2015). Table 1 shows
the set of input parameters for the rate-dependent ele-
ments used in our FE models. Because the DCB tests
are dominated bymode I fracture, we arbitrarily choose
the same model properties in the normal and tangential
directions. Ideally, those arbitrary parameters should
be obtained from proper fracture testing (Reeder and
Crews 1990).

123



Fractional calculus derivation of a rate-dependent PPR-based cohesive fracture model 15

Fig. 12 Description of the
double cantilever beam
(DCB) model: a geometry
and load application points
(all dimensions are in mm)
and b finite element mesh
and boundary conditions.
We discretize the steel arms
using 800 four-node
quadrilateral plane strain
elements and the rubber
interface using 60
zero-thickness
rate-dependent cohesive
elements

Rubber layerSteel arms

1

8

120
200

Load

Load

V

V

800 bulk elements 60 cohesive elements

(a)

(b)

Table 1 Fracture parameters for the cohesive elements used to
model the rubber interface in the DCB test

Mode I fracture energy, φn (N/mm) 2.8

Mode II fracture energy, φt (N/mm) 2.8

Normal cohesive strength, σmax (MPa) 1.2

Tangential cohesive strength, τmax (MPa) 1.2

Non-dimensional shape parameters, α = β 3.5

Initial slope indicators, λn = λt 0.45

Order of the fractional derivative, v̂ 0.3

Stiffness parameter, c 8.5

Normal and tangential springpot viscosity
parameter, λ̂ = η̂k/(cEk)

3.5

Figure 13 shows both numerical and experimen-
tal results for the DCB tests at various loading rates.
The results show that the peak load increases as the
applied cross-head displacement rate increases. How-
ever, for the chosen set of fracture parameters, our
model slightly underestimates the experimental peak
load for lower rates (e.g., less than 10 mm/min) and
slightly overestimates the experimental peak load for
higher rates (e.g., more than 10mm/min). Although we
could improve our model predictions by further cali-
brating the set of fracture parameters (Shen and Paulino
2011a, b), this is beyond the scope of the present study.

Figure 14 presents a typical result fromone of the FE
simulations,whichwe use to illustrate the delamination
process in one of the DCB tests. This figure shows the
evolution of the von Mises stress and the deformation
history of one of the DCB tests corresponding to an
applied rate of 1 mm/min. Here, we observe that the
von Mises stress increases between points A and C,

decays smoothly between points C and E, and drops
drastically after point E. The drop in stresses is con-
sistent with the drop in the applied load, which results
from the loss of the ligament length bonding the two
steel arms.

4.2 Mixed-mode rate-dependent rubber/metal
debonding

In this example, we simulate the quasi-static mixed-
mode debonding process between rubber and metal.
The numerical results obtained from our mixed-mode
rate-dependent CZM are compared against the exper-
imental results obtained by Liechti and Wu (2001).
Based on their study, we use the compact tension/shear
(CTS) specimen to simulate the rate-dependent frac-
ture test. The CTS specimen geometry (Wu 1999) and
the finite element discretization are shown in Fig. 15.

The loading is applied as indicated by Liechti and
Wu (2001), such that we first apply a normal displace-
ment,uy , in a stepwisemanner, followedby a tangential
displacement, ux , which is applied at a constant rate.
We consider both positive and negative shear displace-
ments in this study, and in both cases, we first apply
a normal displacement (uy = 1.5 mm) linearly over
a time period of 0.05 s followed by a shear displace-
ment with a rate of u̇x = 0.01 mm/s for the positive
shear test or u̇x = − 0.02 mm/s for the negative shear
test. The rates of shear displacement used here are con-
sistent with the shear rates of γ̇ = 5 × 10−3/s and
γ̇ = 1 × 10−2/s reported by Liechti and Wu (2001)
for the positive and negative shear experiments, respec-
tively. We wait 100 s between application of the nor-
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16 O. Giraldo-Londoño et al.

Fig. 13 Load versus
cross-head displacement
curves for the double
cantilever beam test at
several applied opening
rates. Experimental results
are obtained from Musto
and Alfano (2015)
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Fig. 14 Evolution of von Mises stresses (kPa) on a typical DCB test (left) for various points during the loading history (right) (online
version in color)
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ux

uy

# bulk elements: 1,400
# cohesive elements: 100

(b) 

(a) 

Cohesive elements Rubber layer

Rubber layer

Steel

2

22.3
50.8

Initial notch
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Fig. 15 Geometry of the CTS specimen and finite element
discretization used to study the mixed-mode rate-dependent
debonding process between rubber and steel: a a 2D representa-
tion of the CTS geometry (dimensions is mm), and b the finite

element mesh and boundary conditions used in the simulation.
The rubber layer is discretized using 1400 four-node plane stress
elements and the debonding layer using 100 zero-thickness rate-
dependent (or rate-independent) cohesive elements

mal and the shear displacements, which helps to dissi-
pate some of the viscoelastic stresses in the bulk mate-
rial induced by the fast application of the normal dis-
placement. This strategy avoids large jumps in both
the normal and shear loads that occur in the numeri-
cal model when the normal displacement is applied too
fast.

The behavior of the rubber (bulk material) is sim-
ulated using a visco-hyperelastic material model that
uses a three-term incompressible Ogdenmodel (Ogden
1972) with stored-energy density function of the form5

W =
3∑

i=1

2μi

α2
i

(λ
αi
1 + λ

αi
2 + λ

αi
2 − 3), (37)

where λi , i = 1, 2, 3 are the principal stretches, andμi

and αi are material parameters. We use the parameters
shown in Table 2 to define the hyperelastic behavior
of rubber6. The viscoelastic response of rubber is rep-
resented by a 14-term Prony series, whose terms are
given in Liechti and Wu (2001).

We simulate the behavior of the rubber/steel inter-
face using the mixed-mode rate-dependent cohesive
element derived in Sect. 3. The material parameters

5 The form of the stored energy function (37) is that used in
ABAQUS (2011) and differs from the form the one used by
Liechti and Wu (2001).
6 Note that the numerical values in Table 2 differ from those
reported byLiechti andWu (2001) because the formof theOgden
stored energy function used in their work differs from that given
in Eq. (37).

Table 2 Parameters used to
describe the hyperelastic
behavior of rubber

Term μi (MPa) αi

1 0.103 0.5

2 2.45×10−4 8.91

3 0.447 −2

Table 3 Fracture parameters used to simulate the mixed-mode
rate-dependent rubber/metal debonding problem

Mode I fracture energy, φn (N/mm) 0.87

Mode II fracture energy, φt (N/mm) 3.05

Normal cohesive strength, σmax (MPa) 2.0

Tangential cohesive strength, τmax (MPa) 2.4

Non-dimensional normal shape parameter, α 3.0

Non-dimensional tangential shape parameter, β 3.5

Initial slope indicators, λn = λt 0.05

Order of the fractional derivative, v̂ 0.3

Stiffness parameter, c 1.49

Normal and tangential springpot viscosity
parameter, λ̂ = η̂k/(cEk)

1.8

that we use to represent the rate-dependent debond-
ing process are given in Table 3. These parameters are
obtained by trial and error, such that we are able to
approximate the experimental results. We also simu-
late the debonding behavior of the rubber layer using
the rate-independent PPRmodel (Park et al. 2009; Park
and Paulino 2012). To obtain the results from the rate-

123



18 O. Giraldo-Londoño et al.

independent CZM, we scale the mode I and II frac-
ture energies and cohesive strengths from Table 3 to
account for the expected increase of fracture energy and
cohesive strength due to the applied loading rates. The
parameters used for the rate-independent PPR model
are φn = 2.02 N/mm, φt = 7.08 N/mm, σmax = 4.64
MPa, τmax = 5.57 MPa, α = 3.0, β = 3.5, and
λn = λt = 0.05.

Figure 16 shows both the numerical and experimen-
tal crack opening displacement (COD) profiles for the
positive and negative shear experiments, at the onset of
crack initiation and for an instant during crack growth.
Due to the finite rotations allowed in the simulations,
the numerical results are able to capture the “Z”-
shaped crack opening profile obtained experimentally
for the positive shear case. The numerical CODprofiles
obtained with the rate-dependent CZM agree well with
those obtained experimentally both for crack initiation
and during crack growth and for both the positive and
the negative shear experiments. However, the results

from the rate-independent PPR model only agree well
with the experimental results for the negative shear
experiment. Because the PPRmodel has no viscoelastic
behavior built in, it cannot simultaneously predict the
behavior from both positive and negative shear exper-
iments using a single set of fracture parameters.

As depicted in Fig. 17, we also obtain crack separa-
tion profiles in both normal and shear directions, during
crack initiation and crack growth. For the positive shear
experiments (Fig. 17a, b),�x < �y during crack initia-
tion and�x > �y during crack growth. That is because
during crack growth, the crack profile acquires a “Z”
shape, which allows for larger displacements in the
horizontal direction than in the vertical direction. The
results from the negative shear experiment (Fig. 17c,
d) show that |�x | > �y both during crack initiation
and during crack growth. That is because the negative
shear experiment requires more energy than the posi-
tive shear experiment to debond the rubber layer from
the steel substrate, and thus, at the onset of debonding,

Fig. 16 Numerical and
experimental crack-opening
displacements for the
positive shear (top) and
negative shear (bottom)
tests during: a and c crack
initiation, and b and d crack
growth. The results for the
rate-independent CZM are
found using the PPR CZM
(Park et al. 2009). The
location x = 0 mm
corresponds to the notch tip -0.5
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Fig. 17 Crack separation
profiles for modes I and II
obtained from the simulated
mixed-mode fracture tests
with positive shear (top) and
negative shear (bottom)
during: a and c crack
initiation, and b and d crack
growth. The numerical
results for the
rate-independent CZM are
obtained using the PPR
CZM (Park et al. 2009). In
the results displayed here,
the location x = 0 mm
corresponds to the notch tip Location,  x (mm)
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the rubber layer is already considerably stretched in the
horizontal direction for the negative shear experiment.
As expected from the results shown in Fig. 16, the nor-
mal and tangential crack opening displacements from
the rate-independent CZM are larger in magnitude than
those from the rate-dependent CZM.

In addition to COD and crack-opening profiles, we
also compute the time histories of applied loads in both
shear and normal directions, as shown in Fig. 18. The
predicted shear load behaves almost linearly for both
the positive and the negative shear experiments (e.g.,
see Fig. 18a and c), which agrees with observations by
Liechti andWu (2001). The linear response is attributed
to the behavior of the bulk material obtained from the
Ogden model. As indicated in Fig. 18b, the change in
normal load, which is obtained by subtracting the nor-
mal preload due to uy from the current normal load,
agreeswellwith the experimentalmeasurements for the
positive shear experiment, but over-predicts the exper-

imental measurements for the negative shear exper-
iment. Over-prediction in the negative shear experi-
ment, in which large shear strains are required to cause
debonding, is expected based on the findings of Liechti
andWu (2001). In Fig. 7e of their paper, they show that
the numerical model for the bulk over-predicts normal
stresses when large shear strains are applied.

4.3 Rate-dependent matrix/fiber debonding

The following example investigates the rate-dependent
debonding behavior of a matrix/fiber interface.We per-
form an analysis on a unit cell in the form of a regu-
lar hexahedron with a cylindrical inclusion, shown in
Fig. 19a. We analyze a unit cell under equi-biaxial ten-
sion and assume plane strain conditions. Because of
symmetry, wemodel a quarter of the domain (Fig. 19b).
The FE mesh and boundary conditions that we use for
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Fig. 18 Numerical and experimental load histories for the
mixed-mode fracture tests with positive shear (top) and nega-
tive shear (bottom): a and c shear load, and b and d change

in normal load. The numerical results for the rate-independent
CZM are obtained using the PPR CZM (Park et al. 2009)

# nodes: 7911
# bulk elements: 7623
# cohesive elements: 200

(c)(b)(a)

Fig. 19 Description of the model used to study the rate-
dependentmatrix/fiber debondingprocess:aA3Drepresentation
of the unit cell, b a slice containing one quarter of the cross sec-

tion used to model the geometry, and c the finite element mesh
and boundary conditions used in the simulations

123



Fractional calculus derivation of a rate-dependent PPR-based cohesive fracture model 21

this problem are shown in Fig. 19c. Ngo et al. (2010)
and Park and Paulino (2012) studied this problem, but
they neglected the effects of the loading rate. The study
by Ngo et al. (2010) analyzed multiple fiber radii and
that by Park and Paulino (2012) focused on a fiber
radius of ap = 2 cm. In this example, we use the same
fiber radius as that used by Park and Paulino (2012) and
assume that the volume fraction of the fiber equals 0.6.

Similarly to Park and Paulino (2012), our study
assumes that the elastic modulus of the fiber is Ep =
40 GPa and the elastic modulus of the matrix is
Em = 20 GPa. We also assume that both the fiber
and the matrix have a Poisson’s ratio νp = νm =
0.25. The elastic properties that we selected for the
matrix and the fiber are representative of a Polyvinyl
Alcohol-Engineered Cementitious Composite (PVA-
ECC) (Tosun-Felekoğlu et al. 2014;Kang andBolander
2016). However, the purpose of the current example is
not to study a given particular composite, but instead
is to elucidate the effects of cohesive zone model
parameters, particularly those from the fractional SLS
model.

Because the problem studied herein is dominated by
mode I fracture, we arbitrarily assume the same frac-
ture properties in modes I and II to define the prop-
erties of the rate-dependent cohesive elements. In the
present analysis, we fix the material properties that
determine the behavior of the damage elements and
vary those that determine the behavior of the fractional
SLS model. We vary the properties of the fractional
SLS model in order to analyze their effects on the
rate-dependent debonding process at the matrix/fiber
interface. To determine the behavior of the damage ele-
ments, we assume φn = φt = 100 N/m, α = β = 3,
λn = λt = 0.1, and σmax = τmax = 10 MPa.

To examine the effects of the loading rate, we move
the free faces of the unit cell at several constant speeds
in the directions indicated by the arrows in Fig. 19b.
The FE model results allow us to obtain the aver-
age macroscopic stress–strain curves for each applied
velocity and considering the range of the fractional
SLS model parameters (i.e., for the values of λ̂k , c,
and v̂). We compute the average macroscopic strains
as ε̄ = V t/L0, where V is the applied velocity at the
free faces of the unit cell, t is time, and L0 is the initial
(undeformed) length of the unit cell. Furthermore, we
obtain the macroscopic stresses by averaging the reac-
tion forces at the nodes to which the velocity boundary

condition is applied and then normalizing with respect
to the undeformed area of the free faces.

Figure 20 presents the FE results for the case of
v̂ = 0.3. From these results, we observe that the initial
slopes of the stress–strain curves are independent of the
applied velocity, which indicates that for lower strain
levels, the elastic behavior of both the matrix and the
particle control the macroscopic stress strain response
of the composite. This linear portion extends as the
applied velocity increases, but as the strain increases,
the stress–strain curves deviate from their initially lin-
ear behavior until the peak stress is reached. After the
peak stress is reached, themacroscopic stress decreases
(stress softening), but for higher applied velocities (e.g.,
for V = 1 mm/min or for V = 104 mm/min), the
stresses suddenly decrease7. For all these cases, the
point of sudden decrease corresponds to complete fail-
ure of the cohesive elements. From the set of results
displayed in Fig. 20, we also find that, as the applied
velocity becomes smaller, the macroscopic response
obtained from the rate-dependent mixed-model CZM
approaches the response from the rate-independent
PPR CZM (Park et al. 2009).

To further investigate the effects of both the rate-
dependent model parameters and loading rates, we plot
the peak stress for the values of v̂, λ̂k , and c, as a func-
tion of the applied velocity, as shown in Fig. 21. As
shown by the results, the peak stress increases as the
appliedvelocity increases, following a sigmoidal curve.
One can also observe that, for lower applied velocities,
the peak stresses approach the value ofσmax = 10MPa,
which is the cohesive strength that we used as one of the
input parameters for the damage element. The results
also indicate that the peak stress value for low applied
velocities is independent from either v̂, λ̂k , or c, which
indicates that the slow-limit behavior is governed by the
behavior of the rate-independent PPR cohesive model
(Park et al. 2009). Additionally, the numerical results
indicate that, as the applied velocity increases, the peak
stresses approach a limit value equal to (1+c)σmax. The
behavior observed in either the slow-limit or fast-limit
case is, by construction, consistent with the expected
behavior of our model, which in the slow-limit and fast
limit cases should behave as the rate-independent PPR

7 We observed some convergence issues at the kink points asso-
ciated with failure at the matrix/fiber interface. To circumvent
these convergence issues, we used a line search technique and
allowed for more Newton–Raphson iterations.
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Fig. 20 Macroscopic stress–strain relationships obtained using
fractional derivative of order v̂ = 0.3. The plots are presented
for various springpot viscosity parameters, λ̂k , and fractional
SLS model stiffness parameter, c, considering the range of
applied velocity, V , from 10−8 to 104 mm/min. As the applied

velocity decreases, the macroscopic response obtained from the
rate-dependent CZM approaches that obtained from the rate-
independent PPR CZM by Park et al. (2009) (online version in
color)

model (Park et al. 2009) with initial stiffness Ek and
(1 + c)Ek , respectively.

The order of the fractional derivative, v̂, also affects
themacroscopic behavior of the composite structure for
intermediate values of the applied velocity. According
to the numerical results in Fig. 21, peak stresses are
more sensitive to the applied velocity when the order
of the fractional derivative is smaller. In fact, we found
that both peak stresses and macroscopic stress–strain
curves were more sensitive to the applied velocity for
lower values of v̂. The reason for this behavior is that
the relaxation modulus for the fractional SLS model

depends on the value of v̂. As shown in Fig. 3, we
observemore stress relaxation when v̂ increases (short-
termmemorymaterials) and less stress relaxationwhen
v̂ decreases (long-term memory materials). The mem-
ory effect explains why macroscopic stresses are more
sensitive to the applied velocity as v̂ decreases. Based
on this observation, we infer that v̂ plays the role of a
memory-like parameter, which enables us to simulate
long- and short-term memory fracture processes.
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Fig. 21 Parametric space for macroscopic peak stress as a func-
tion of the applied velocity. The plots are presented for vari-
ous springpot parameters, λ̂k , and fractional SLS model stiffness
parameter, c, considering the range for the order of the fractional

derivative from v̂ = 0.3 to v̂ = 0.9. Peak stresses behave in the
form of a sigmoidal curve, and their magnitudes are highly influ-
enced by the spring stiffness of theMaxwell arm in the fractional
SLS model (online version in color)

5 Summary and conclusions

In this study, we present a mixed-mode rate-dependent
cohesive zonemodel (CZM) that combines the features
of the Park–Paulino–Roesler (PPR) cohesive model
with a fractional standard linear solid (SLS) model.
In our model, we obtain undamaged viscoelastic trac-
tions from a fractional SLS model and then scale them
with two damage parameters that are obtained from the
PPR cohesive model (Park et al. 2009). We are able to
use this model to accurately simulate rate-dependent
fracture processes for a wide range of loading rates.
The accuracy of the model is a direct result of the

fractional SLS model, which entirely governs the rate-
dependence in this CZM. In addition, we successfully
approximate experimental results obtained from the
rate-dependentmixed-mode fracture test byLiechti and
Wu (2001), which demonstrates the capability of the
model to capture rate-dependent mode-mixity depen-
dence.

We analyze the behavior of the relaxation function
of the fractional SLS model to provide physical inter-
pretation to the order, v̂, of the fractional differential
operator. We conclude that v̂ can be interpreted as a
memory-like parameter, which allows for simulation
of crack propagation problems governed by hereditary

123



24 O. Giraldo-Londoño et al.

phenomena with long- and short-term memory. This
parameter strongly influences the debonding process of
fiber-reinforced structures for low loading rates. When
v̂ is small (e.g., v̂ < 0.3), the macroscopic stress–
strain behavior of the fiber-reinforced structures is sen-
sitive to applied displacement rates ranging between
1 × 10−12 mm/min and 1 × 104 mm/min. However,
when v̂ is larger, our results indicate that the macro-
scopic stress–strain relationship is nearly insensitive to
the loading rate up to approximately 1×10−1 mm/min.
Using intermediate values for v̂, we were able to con-
trol the rate-dependence of the CZM for intermediate
loading rates. From these observations, the contribu-
tion of this work is is a model that accurately simulates
rate-dependentmixed-mode fracture processes for both
long- and short-term memory materials.
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Appendix A Assessment of the numerical scheme
used to estimate the Caputo fractional derivative

To verify the accuracy of the numerical scheme pre-
sented in Sect. 2.2 to approximate the Caputo fractional
derivative of a function, f (t), we rewrite Eq. (6) more
compactly, as follows:

0D
v̂
t f (tN ) ≈ 0 D̃

v̂
t f (tN ) = �t−v̂

N

N∑
j=1

( f j − f j−1)B j ,

B j =
�t v̂N (t1−v̂

N , j−1 − t1−v̂
N , j )

t j, j−1
, (38)

where f j−1 = f (t j−1), f j = f (t j ), and tu,v =
tu − tv, ∀ u, v ∈ 0, . . . , N .

For the numerical assessment, we use the polyno-
mial function f (t) = 1

2 t
2, for which the Caputo deriva-

tive is known in closed-form as

0D
v̂
t f (t) = �(3)

2�(3 − v̂)
t2−v̂ .

The numerical results computed using Eq. (38) are
compared with the exact Caputo derivative for vari-
ous orders of the fractional derivative, v̂. We use the
unequally-spaced time grid shown in Fig. 22 to com-
pute the fractional derivatives. As illustrated by Fig. 23,
the results obtained fromEq. (38) approximate well the
exact Caputo fractional derivative for all orders of the
fractional derivative that we considered. To quantify
the quality of the approximation, we compute the rel-
ative H1-norm of the error between the computed and
exact fractional derivatives,

ε1 = ‖0Dv̂
t f (t) − 0 D̃v̂

t f (t)‖1
‖0Dv̂

t f (t)‖1
, (39)

in which 0 D̃v̂
t f (t) refers to the approximation of

0Dv̂
t f (t), i.e., Eq. (38), and ‖ · ‖1 = ∫ t

0 ‖·‖dτ is the
H1-norm of a given function. The computed errors are
displayed in Table 4.

We also conduct a convergence study to determine
the rate of convergence of our numerical solution. For
this purpose, we use a uniform grid, such that a sin-
gle time step �t is used to obtain t j+1 = t j + �t . As
conducted before, we evaluate the relative H1-norm for
v̂ = 0.3, 0.5, 0.7, and 0.9.As indicated byFig. 24, our
numerical scheme has a convergence rate ofO(�t2−v̂ ).

In addition to assessing the accuracy of the proposed
numerical scheme, we provide some remarks related
to its computational cost. For comparison purposes,
we use the numerical approximation of theGrünwald–
Letnikov fractional derivative (Grünwald 1867), which
has been used in studies by Schmidt and Gaul (2002)
and Musto and Alfano (2015), to name a few. The
approximation to the Grünwald–Letnikov fractional
derivative is

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time (s)

Fig. 22 Unequally spaced time discretization used to evaluate
the accuracy of Eq. (38) to estimate the Caputo fractional deriva-
tive for a smooth function f (t). The grid consists of 101 points

(i.e., N = 100), such that ti = 2τ 2i (i = 0, . . . , 100), with
τi+1 = τi + 1/N and τ0 = 0
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Fig. 23 Numerical and exact Caputo fractional derivative of
f (t) = 1

2 t
2 obtained on the unequally-spaced time grid from

Fig. 22. We consider various orders of the fractional derivative,
v̂ ∈ (0, 1)

Table 4 Relative H1-norm
of the error between the
computed and exact
fractional derivatives for
f (t) = 1

2 t
2 and for various

orders of the fractional
derivative, v̂

v̂ ε1

0.3 3.8 × 10−4

0.5 1.2 × 10−3

0.7 3.2 × 10−3

0.9 8.3 × 10−3

Dv̂
t f (t) ≈

(
t

N

)−v̂ N−1∑
j=0

Dj+1 f (t − j t/N ),

Dj+1 = �( j − v̂)

�(−v̂)�( j + 1)
= j − 1 − v̂

j
D j , D1 = 1.

(40)

To approximate a fractional derivative using either
Eq. (38) or (40), we need to sum N terms, which shows
that both equations scale equally as the number of grid
points, N increase. However, due to the larger number
of floating point operations involved in Eq. (38), its cost
of evaluation is larger than that in Eq. (40). We verified
this observation numerically by computing the frac-
tional derivative of f (t) = 1

2 t
2 for various values of N

using both Eq. (38) and (40), as depicted in Fig. 25.

Appendix B Components of the material tangent
matrix for the rate-independent PPR cohesive zone
model

Parameters D̂tt , D̂tn , D̂nt , and D̂nn in Eqs. (32)–(35)
are the components of the material tangent matrix for
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Fig. 24 Relative H1-norm of the error between the numerical
and exact Caputo derivatives of f (t) = 1

2 t
2, computed using

Eq. (39), for various values of �t . As observed in the results, the
numerical scheme used in this study exhibits a convergence rate
of O(�t2−v̂ )
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Fig. 25 Computational cost for the evaluation of a fractional
derivative as a function of N . For either Eq. (38) (proposed
scheme) or Eq. (40) (Grünwald–Letnikov approximation) and
for each value of N , the computational time is determined as the
average time required to evaluate the fractional derivative in all
grid points

the rate-independent PPR cohesive zone model (Park
and Paulino 2012). Because κn and κt are non-negative
quantities, wewrite the components of thematerial tan-
gent matrix for the rate independent PPR model as

D̂tt (κn, κt ) = �t

δ2t

[
(n2 − n)

(
1 − κt

δt

)β

(
n

β
+ κt

δt

)n−2

+ (β2 − β)

(
1 − κt

δt

)β−2
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(
n

β
+ κt

δt

)n

− 2βn

(
1 − κt

δt

)β−1 (
n

β
+ κt

δt

)n−1
]

[
�n

(
1 − κn

δn

)α (
m

α
+ κn

δn

)m

+ 〈φn − φt 〉
]

, (41)

D̂tn(κn, κt ) = D̂nt (κn, κt )

= �n�t

δnδt

[
m

(
1 − κn

δn

)α (
m

α
+ κn

δn

)m−1

− α

(
1 − κn

δn

)α−1 (
m

α
+ κn

δn

)m
]

[
n

(
1 − κt

δt

)β (
n

β
+ κt

δt

)n−1

− β

(
1 − κt

δt

)β−1 (
n

β
+ κt

δt

)n
]

, (42)

D̂nn(κn, κt ) = �n

δ2n

[
(m2 − m)

(
1 − κn

δn

)α (
m

α
+ κn

δn

)m−2

+ (α2 − α)

(
1 − κn

δn

)α−2 (
m

α
+ κn

δn

)m

− 2αm

(
1 − κn

δn

)α−1 (
m

α
+ κn

δn

)m−1
]

[
�t

(
1 − κt

δt

)β (
n

β
+ κt

δt

)n

+ 〈φt − φn〉
]

. (43)

Appendix C List of symbols

α Parameter controlling the shape of the cohe-
sive softening curve in the normal direction

δ̄n Conjugate normal final crack openingwidth
δ̄t Conjugate tangential final crack opening

width
β Parameter controlling the shape of the cohe-

sive softening curve in the tangential direc-
tion

δnc Normal crack opening width at the peak
normal traction in the original PPR model

�n Normal separation along the fracture sur-
face

δn Normal final crack opening width
�i+1

n Normal separation along the fracture sur-
face at time increment i + 1

�i
n Normal separation along the fracture sur-

face at time increment i
δtc Tangential crack opening width at the peak

normal traction in the original PPR model
�t Tangential separation along the fracture sur-

face

δt Tangential final crack opening width
�i+1

t Tangential separation along the fracture sur-
face at time increment i + 1

�i
t Tangential separation along the fracture sur-

face at time increment i
�n Energy constant in the PPR model
�t Energy constant in the PPR model
η̂n Rigidity of the springpot in the normal

direction
η̂t Rigidity of the springpot in the tangential

direction
D̂nn, D̂nt Normal components of the material tan-

gent stiffness matrix from the original PPR
model

D̂tn, D̂tt Tangential components of the material tan-
gent stiffness matrix from the original PPR
model

T̂n Normal cohesive traction in the original
PPR model

T̂t Tangential cohesive traction in the original
PPR model

v̂ Order of the Caputo fractional derivative
κn Kinematic quantity defining the maximum

normal crack opening width in the history
of loading

κ i+1
n Maximum normal crack opening width at

time increment i + 1
κ i
n Maximum normal crack opening width at

time increment i
κt Kinematic quantity defining the maximum

absolute tangential crack opening width in
the history of loading

κ i+1
t Maximum absolute tangential crack open-

ing width at time increment i + 1
κ i
t Maximum absolute tangential crack open-

ing width at time increment i
λn Parameter controlling the hardening slope

of the PPR model in the normal direction
λt Parameter controlling the hardening slope

of the PPRmodel in the tangential direction
(˙) Time derivative
〈·〉 Macauley bracket
D Material tangent stiffness matrix
φn Fracture energy in the normal direction

(with zero tangential separation)
φt Fracture energy in the tangential direction

(with zero tangential separation)
σmax Cohesive strength in the normal direction

from the original PPR model
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τmax Cohesive strength in the tangential direction
from the original PPR model

0Dv̂
t (·) Caputo fractional derivative of order v̂

0 I v̂
t (·) Riemann–Liouville fractional integral of

order v̂

c Stiffness parameter for the fractional SLS
model

Dnn, Dnt Normal components of the material tangent
stiffnessmatrix for the rate-dependentCZM

dn Normal scalar damage parameter consistent
with the PPR model

Dtn, Dtt Tangential components of the material tan-
gent stiffness matrix for the rate-dependent
CZM

dt Tangential scalar damage parameter consis-
tent with the PPR model

En Initial stiffness parameter for thePPRmodel
in the normal direction

Et Initial stiffness parameter for thePPRmodel
in the tangential direction

m Nondimensional exponent in thePPRmodel
n Nondimensional exponent in thePPRmodel
Sn Normal undamaged traction from fractional

SLS model
St Tangential undamaged traction from frac-

tional SLS model
t time
Tn Rate-dependent cohesive traction in the

normal direction
Tt Rate-dependent cohesive traction in the tan-

gential direction
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