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Abstract Tensile cracking in asphalt pavements due to vehic-
ular and thermal loads has become an experimental and nu-
merical research focus in the asphalt materials community.
Previous studies have used the discrete element method
(DEM) to study asphalt concrete fracture. These studies used
trial-and-error to obtain local fracture properties such that the
DEMmodels approximate the experimental load-crack mouth
opening displacement response. In the current study, we iden-
tify the cohesive fracture properties of asphalt mixtures via a
nonlinear optimization method. The method encompasses a
comparative investigation of displacement fields obtained
using both digital image correlation (DIC) and heterogeneous
DEM fracture simulations. The proposed method is applied to
two standard fracture test geometries: the single-edge notched
beam test, SE(B), under three-point bending, and the disk-
shaped compact tension test, DC(T). For each test, the
Subset Splitting DIC algorithm is used to determine the dis-
placement field in a predefined region near the notch tip.
Then, a given number of DEM simulations are performed on
the same specimen. The DEM is used to simulate the fracture
of asphalt concrete with a linear softening cohesive contact
model, where fracture-related properties (e.g., maximum ten-
sile force and maximum crack opening) are varied within a
predefined range. The difference between DIC and DEM dis-

placement fields for each set of fracture parameters is then
computed and converted to a continuous function via multi-
variate Lagrange interpolation. Finally, we use a Newton-like
optimization technique to minimize Lagrange multinomials,
yielding a set of fracture parameters that minimizes the differ-
ence between the DEM and DIC displacement fields. The
optimized set of fracture parameters from this nonlinear opti-
mization procedure led to DEM results which are consistent
with the experimental results for both SE(B) and DC(T)
geometries.
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Introduction

Asphalt pavement roughness, generated by cracks developed
via vehicular and thermal loads, has led to significant in-
creases in user cost [1]. Due to weakness in tension of cemen-
titious materials such as asphalt, cracks generally form in a
tensile fashion. This has led the paving industry to invest in
academic research studies aimed at developing fracture test
geometries as well as numerical modeling applications to
identify local material fracture properties. Local asphalt frac-
ture properties have been employed to compare trial mixtures
containing new materials to a quality performing reference
mixture or to model full-scale pavement sections. Previous
research involving beam and disk-shaped compact tension
fracture geometries of asphalt mixtures has achieved experi-
mental repeatability in global material response and correla-
tion with field performance [2, 3]. Presently, considerable em-
phasis is being placed on coupling numerical simulations with
asphalt fracture experiments, in order to identify local fracture
properties via matching the results at the global and local
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scales. We believe that coupling numerical and experimental
results at the local scale, e.g., by matching the displacement
field during a fracture test, will help to advance our under-
standing of asphalt mixture fracture.

The discrete element method (DEM) is a numerical model-
ing tool that is highly applicable to the modeling of fracture in
heterogeneous materials such as hot mix asphalt (HMA)
[4–9]. Hot mix asphalt can be assumed to be composed of
aggregates, mastic, and interfaces between aggregates and
mastic [9]. A typical fracture analysis of HMA in the context
of DEM requires input parameters defining bulk material be-
havior as well as fracture-related properties. These properties
allow for the definition of the interaction between the particles
used to simulate the fracture.

The determination of local fracture properties such as frac-
ture energy and cohesive strength through numerical simula-
tions is a nontrivial task. For example, if the fracture properties
obtained experimentally are directly used to perform hetero-
geneous DEM simulations, the numerical output obtained of-
ten differs from the actual behavior of the tested specimen. As
a result, calibration of these properties is needed to determine
representative parameters for simulations [4]. Previous re-
searchers have performed this calibration by visually compar-
ing the global response of the specimen with the results of
heterogeneous DEM simulations (e.g., calibration based of
load vs. crack mouth opening displacement (CMOD) curves)
[4, 8, 9]. This approach, however, does not guarantee that the
simulation will accurately predict the local behavior of the
tested specimen. In other words, simulated results based on
parameters calibrated from global load-CMOD curves may
yield inaccurate prediction of the full crack profile, and there-
fore, may not accurately capture the local fracture behavior.

Calibrated fracture parameters can be obtained through sin-
gle or full displacement field experimental measurements. For
instance, Aragão and Kim [10], Kim and Aragão [11], and Im
et al. [12] used digital image correlation (DIC) to measure
CMOD values in a fine aggregate matrix to identify local
fracture parameters which match FEM simulations.
However, notice that their calibration is based on a global
quantity (i.e., the CMOD), and not on full displacement fields.
Local fracture properties obtained frommultiple displacement
field measurements on the specimen surface, and ahead of the
crack tip, can help to improve the prediction of material re-
sponse obtained from simulations. Consequently, we have
used the local displacement fields found through the DIC
rather than the CMODmeasurement alone. Some studies have
used full displacement fields to obtain the fracture parameters
of different materials. Pop et al. [13] used full displacement
field experimental measurements to characterize FEM fracture
parameters for isotropic media. In that study, the FE models
were elastic and isotropic, and no crack propagation was con-
sidered. In addition, Shen and Paulino [14, 15] used a hybrid
inverse technique to estimate the cohesive fracture properties

of a ductile adhesive and a quasi-brittle plastic [14], and fiber-
reinforced cementitious composites [15], by comparing the
DIC measurements of the displacement fields with the results
of FEM simulations. To simulate crack propagation, Shen and
Paulino [14, 15] used the so-called cohesive zone model
(CZM) approach. In their studies, the CZM was constructed
by means of a spline curve passing through a series of control
points that were determined using the Nelder-Mead optimiza-
tion method. This is a derivative-free method to determine the
cohesive fracture parameters, which requires hundreds of iter-
ations to converge. The main limitations of those investiga-
tions are: 1) the crack path in the FEM simulations was
predefined to be a straight line; and 2) the FEM models were
elastic and homogeneous, neglecting time dependency, i.e.,
viscoelastic effects.

The main goal of the current study is to use DIC and DEM
displacement field measurements to obtain the local fracture
properties for heterogeneous asphalt mixtures. This method-
ology can be used by academicians and higher level mixture
design firms to optimally design asphalt mixtures in terms of
low-temperature fracture resistance. In contrast to previous
coupled experimental and numerical studies, no predefined
crack path is chosen. A nonlinear optimization method for
obtaining the cohesive fracture properties of asphalt mixtures
is proposed in the current study. The method aims to minimize
the difference between measured (DIC) and simulated (DEM)
displacement fields, using a set of DEM fracture simulations.
To achieve this, the measure of the difference between DEM
and DIC displacement fields for a predefined set of fracture
parameters is used to construct a continuous function based on
multivariate Lagrange interpolation. This function is then used
to minimize the difference between measured and simulated
displacement fields using Newton-like optimization methods.
The DEM simulations are performed using the software PFC-
2D - see Cundall and Strack [16]. In the DEM simulations,
fracture is modeled using linear softening cohesive contacts.
The optimized set of fracture parameters obtained from the
nonlinear optimization procedure led to DEM results that were
in good agreement with experimental results found using both
SE(B) and DC(T) geometries.

Experimental Procedure

The experimental portion of the study evaluates an aggregate-
asphalt surface mixture with original materials (no recycled
material content, additives, or modifiers). The mixture is a PG
64–22 9.5 mmnominal maximum aggregate sizemixture con-
taining dolomitic limestone aggregate. Cylindrical specimens
are created in the laboratory following the Superpave asphalt
mixture design specifications [17]. The cylinders are
compacted such that they contain approximately 7.0 ± 0.5%
air voids, following the ASTM D7313–13 volumetric
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protocols [18]. Both asphalt concrete beam, SE(B), and disk-
shaped compact tension test, DC(T), geometries are used in
the current study to evaluate fracture resistance of asphalt mix-
tures. Fracture resistance is determined by characterizing the
pre- and post-peak Load-CMOD behavior. The primary testing
result is a measure of fracture energy, which is obtained by
determining the area under the load-CMOD plot, which is nor-
malized by the fractured specimen area. An example plot of
load-CMOD curves, in this case for SE(B) specimens, is shown
in Fig. 1 with a test temperature of -12 °C. The DC(T) test is
conducted in accordance with the ASTM D7313-13 [18]. The
test is conducted using an Instron 8500 servo-hydraulic system
in CMOD displacement control at an opening rate of 1.0 mm/
min. A conditioning chamber surrounds the testing set-up in
order to maintain a constant test temperature, which in this case,
was set at −12 °C.

The beam test geometry, SE(B), and loading rate are chosen in
this study based on earlier experimental observations ofWagoner
et al. [2]. The SE(B) specimens are cut from Superpave gyratory
cylinders using masonry and tile saws. Specimens are initially
sliced to a 40 mm thickness with 2 cuts using a masonry saw. A
tile saw is used to slice the ends of the specimens to reach the
span length shown in Fig. 2. The same tile saw is also used to
insert the notch. The geometry shown in Fig. 2 has a thickness of
40 mm and has a ligament of 45 mm, which is shorter than the
one in DC(T) geometry. However, a consistent value of 0.25 for
the notch to depth (a/W) ratio remains the same in both cases.
This ratio was maintained at 0.25 to increase the remaining lig-
ament length and reduce variability caused by the heterogeneous
nature of the asphalt mixture. It should be noted that the beam
dimensions differ from those of Wagoner et al. [2]. A smaller
beam specimen, as shown in Fig. 2, is considered in this study
due to the small nominal maximum aggregate size (NMAS) of
the asphalt mixture. The loading rate is chosen as 0.5 mm/min
such that the peak load occurs approximately five seconds after
reaching the asphalt concrete strength criteria discussed by
Wagoner et al. [2]. The same environmental cooling chamber,

data acquisition system, and servo-hydraulic machine as the
DC(T) test are used to avoid additional study variables.

The DEM particle stiffness properties are determined using
the indirect tension (IDT) test. Both mastic (asphalt cement
and aggregate smaller than 2.36 mm) and the full 9.50 mm
NMAS mixture are tested according to the AASHTO T-322
IDT creep compliance test method [19]. Mastic and mixture
creep compliance test results are shown in Fig. 3. It should be
noted that the mastic creep compliance is higher than the mix-
ture due to the lack of coarser aggregates. The mastic creep
compliance results, later converted to relaxation modulus, are
used for the remainder of the study as the mastic stiffness
properties in the heterogeneous DEM simulations. The mastic
particle size limit is chosen to coincide with the definition
provided by Kim et al. [8]. The IDT testing is accomplished
at −12 °C for a period of 1000 s to capture the time dependent
material response. The experimental creep compliance was
fitted using the Burger’s model as shown in equation (1):

D ξð Þ ¼ D1 þ ξ
η1

þ D2 1−e−ξ=τ2
� �

ð1Þ

where ξ is reduced time, D(ξ) is the creep compliance at the
reduced time ξ, and Di, τi, and ηi are fitted model constants.
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Fig. 3 Creep compliance test results for a temperature T = −12 °C
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The Prony Series model is the most widely used phenomeno-
logical model in asphalt concrete creep compliance research.
However, to perform the DEM simulations, we used the
PFC2D 4.0 version software, which only has Burger’s model
functionality. It should be noted that the built-in Burger’s
model contact in PFC2D 4.0 does not allow cohesive soften-
ing. Consequently, this study modifies the built-in model con-
tact to allow for cohesive softening as discussed below in the
BDiscrete Element Modeling^ section. As shown in Fig. 3, the
Burger’s model fits the experimental data well for the mate-
rials and test temperature used in this study. In order to eval-
uate the relaxation modulus of the mastic, interconversion, as
discussed in Park and Kim [20], is used.

DIC Approach

In this study, DIC is used to evaluate the displacement fields
found in both SE(B) and DC(T) fracture tests. In the past,
researchers developed DIC matching algorithms, such as the
subset DIC method, to determine displacement and resulting
strain fields [21–24]. A full-field matching algorithm,
employed by Shen and Paulino [14] in the area of cementi-
tious materials, yielded improved DIC correlation perfor-
mance in comparison to the traditional subset DIC method.
However, the DIC matching method used by Shen and
Paulino [14] is not directly applicable in this study due to
unpredictability of the crack path in heterogeneous material
fracture. Thus, we use the Subset Splitting method by Poissant
and Barthelat [25], to evaluate DIC displacement fields, due to
its ability to consider heterogeneous crack growth. Linear
shape functions are used in this study in conjunction with
the Subset Splitting method. The linear shape functions are
shown below in equation (2):

u i; jð Þ ¼ uþ ∂u
∂x

iþ ∂u
∂y

j ; and v i; jð Þ ¼ vþ ∂v
∂x

iþ ∂v
∂y

j ð2Þ

where u and v are the horizontal displacement and vertical
displacement of the subset. The best match of linear shape

function parameters, q ¼ u; v; ∂u∂x ;
∂u
∂y ;

∂v
∂x ;

∂v
∂y

� �
, yields the low-

est cumulative difference in pixel intensities found using a
least-squares matching correlation coefficient. Poissant and
Barthelat [25] determined that subsets could be split into mas-
ter and slave subsets containing a discontinuity such that op-
timized parameters sets, qmaster and qslave, were determined via
a Newton-Raphson approach.

In order to use the Subset Splitting method [25], the asphalt
samples are photographed during the fracture tests at a
predefined image capture rate. Images are taken using a
2MP Stingray F-201C CCD camera and a Tamron 50mm lens
at a range of 1.0 m from the specimen. All images are taken

perpendicular to the specimen surface as shown in Fig. 4.
Imaging at a distance of approximately 1.0 m is possible due
to the glass viewport of the cooling chamber. The viewport is
larger than the test specimens to allow imaging throughout the
test without opening the chamber and subjecting warm air to
the specimens. During testing, all the ceiling lights in the
laboratory were turned off to avoid interference with the
LED lights of the DIC system. The images are taken at a rate
of 5 frames per second and are cropped to 1300 pixels by 1000
pixels for the SE(B) and 1300 pixels by 1200 pixels for the
DC(T) specimens. The images are cropped to remove the
presence of the notch in the analyzed images. The remaining
image region is named the region of interest (ROI). The ROI,
for both DC(T) and SE(B) geometries, in this case, is approx-
imately 45 mm length by 45 mm in height, as depicted in
Fig. 5a and b. The data collection of load and CMOD mea-
surements from the experiment and DIC images are synced
manually. This syncing process is completed by first identify-
ing the imaging rate of the camera and Load-CMOD data
acquisition rate. Then, the image of initial load application is
found by manually parsing through images until movement is
found. As a result, with the previously found rates and initial
loading image, the images and load-CMOD data are synchro-
nized. Table 1 shows the DIC parameters describing the cam-
era, imaging distance, and resolution in the present study.

Discrete Element Modeling

In the literature, You and Buttlar [27] used the DEM approach
to obtain asphalt mixture complex modulus response for var-
ious temperatures and load frequencies. In addition, Kim et al.
[6–8] successfully used the DEM approach to model fracture
in homogeneous and heterogeneous asphalt mixtures. In this
study, we use the DEM approach to simulate crack propaga-
tion for both SE(B) and DC(T) geometries. Each geometry is
discretized using rigid circular elements, and the simulations

PC

CCD Camera

Cooling Chamber

LED Lights

Fracture Specimen

PC

Fig. 4 Schematic of the set-up used to collect the images used in the DIC
algorithm. A Stingray F-201C camera located 1 m from the specimens is
used to obtain the images during the fracture tests for both SE(B) and
DC(T) geometries. (Adapted from Hill and Buttlar [26])
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are performed using the particle flow code in two dimensions,
PFC-2D [16]. Notice that the present study is focused on 2D
heterogeneous fracture simulations; however, the fracture tests
are actually in three dimensions. In order to model an actual
three-dimensional fracture test using a two-dimensional com-
putational model, some general issues related to heterogeneous
modeling of asphalt mixtures need to be accounted for. The
DIC system, illustrated by Fig. 4, only allows measurements
of 2D surface deformations in the horizontal and vertical
(planar) directions. Other experimental techniques could be in-
vestigated to measure displacement fields and thus the reader is
referred to the appropriate references [28–30]. Here 2D (planar)
DIC fields measured from the 3D fracture test and 2D DEM
modeling are used to couple the experiments with the simula-
tions. Previous studies by Shen and Paulino [14, 15] in adhe-
sives and cementitious materials have used the approach of
planar DIC and 2D FEM simulations to determine the applica-
bility of a nonlinear optimization method. Consequently, the
use of 2D plane strain DEM simulations is chosen in this study
to evaluate the applicability of this optimization method.1

The DEM equilibrium equation is provided below in equa-
tion (3) in addition to the force increment equation:

MaþKΔx ¼ Δ f ; Δ f ¼ KΔu ð3Þ

whereM is the mass of the particle, a is the acceleration of the
particle, K is the stiffness matrix,Δx (Δu) is the incremental
displacement, andΔf is the incremental force. Before damage
has occurred, the stiffness matrix K is constructed based on
linear contact models between adjacent particles in the DEM
“mesh” [8]. The linear contacts are defined in terms of the
normal and shear contact stiffness between particles, Kn and
Ks, respectively. The contact stiffness depends on the particle
packing arrangement. In the study by Kim et al. [8], different
particle packing arrangements were discussed, including
square, hexagonal, and random. It is known that a square

particle packing in DEM cannot generate a Poisson’s effect.
To circumvent this problem, a hexagonal packing arrange-
ment is used. A hexagonal particle packing offers both the
possibility to simulate Poisson’s effect and assign contact
properties in a straightforward way. Kim et al. [8] presented
expressions for the normal and shear contact stiffness between
adjacent particles, Kn and Ks, by equating the strain energy of
the DEM-based model and that from a two-dimensional plane
strain continuum model, leading to:

Kn ¼ Effiffiffi
3

p
1þ νð Þ 1−2νð Þ ; and Ks ¼ E 1−4νð Þffiffiffi

3
p

1þ νð Þ 1−2νð Þ
ð4Þ

where E is the elastic modulus and ν is the Poisson’s ratio.
Note that the contact stiffness shown in equation (4) are de-
veloped for a hexagonal particle packing arrangement [8]. In
order to model damage development in asphalt during fracture
processes, all particle bonds utilize linear softening cohesive
contacts. An example of the linear softening cohesive law is
provided below in Fig. 6 and a complete description of the
DEM implementation of linear cohesive softening is provided
in Kim et al. [8]. An additional user-defined viscoelastic co-
hesive contact is employed in this study to consider the time-
dependent response of the mastic. Asphalt mastic and thus

1 Future research could explore 3D DEM simulations using DIC
measurements.

ROI
ROI

(a) (b)

Fig. 5 Regions of interest (ROI)
of 45 mm by 45 mm used to
measure the DIC displacement
fields during the fracture tests for:
(a) DC(T) geometry; and (b)
SE(B) geometry

Table 1 DIC Imaging Parameters

DIC Technique Subset Splitting

Sensor/Digitization 1624p x 1234p/8-bit

Lens Mount C Mount

Image Capture Rate 5 Hz

Scaling 0.0439 mm/pixel

Subset/Step Size 25/6

Interpolation Method Bicubic B-spline

Correlation Criteria < 0.004

Image Pre-processing LUT Brightness Adjustment

Displacement Resolution 0.004p
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asphalt concrete generally behave as a viscoelastic material at
low temperatures as shown by the creep compliance test re-
sults in Fig. 3. Therefore, it is necessary to consider the time-
dependent response of the mastic in heterogeneous fracture
simulations. The current study can provide an initial indication
if there is a need for a viscoelastic cohesive contact in hetero-
geneous DEM simulations at this particular temperature and set
of loading rates. The use of viscoelastic assumptions might also
be helpful with higher testing temperatures and slower testing
rates. The user-defined model uses the interconverted mastic
relaxation modulus results from the Burger’s model fit to iden-
tify stiffness and viscosity properties. The viscoelastic response
of the model was verified using a step stress relaxation test and
reacts in a viscoelastic fashion prior to reaching the peak force
of the cohesive bond between particles (fmax). The viscoelastic
contact model only differs from the elastic cohesive contact
model in the initial loading portion prior to reaching the peak
force. After reaching the peak force, the viscoelastic model
follows a linear softening model to zero cohesive force at the
maximum cohesive bond displacement (δmax) in the same fash-
ion as the elastic bilinear cohesive model. Results obtained
using both bilinear contacts and the user-defined viscoelastic
contacts are discussed later in the BResults^section.

The primary advantage of DEM applications to asphalt
mixture fracture is their ability to consider heterogeneous mi-
crostructures in a relatively simple way. Figure 7 illustrates the
procedure to obtain a heterogeneous DEM geometry based on
an asphalt test specimen. First, the test specimen is imaged
using a 21.1 megapixel Canon EOS 5D Mark II camera with
an EF 180 mm f/3.5 L Macro Lens. This image is then con-
verted into a binary image using a Matlab image processing
tool. Next, aggregate particles larger than 2.36 mm are iden-
tified using the Matlab blob analysis. Aggregate pixels are re-
assigned a value of 1 and remaining pixels within the test
geometry are re-assigned the value of 0 to correspond to the
mastic. This leads to a binary image as depicted on the left side

of Fig. 7. Then, DEM particles (balls) are superimposed to the
image. These particles are placed following a hexahedral
packing structure as recommended by Kim et al. [8]. A radius
of 0.3 mm is chosen to model aggregate particles and reduce
computational t ime. After the DEM particles are
superimposed to the binary image, two DEM particle groups
(called aggregate and mastic groups) are identified. If the cen-
troid of a ball falls inside a region with a pixel value of 1, it is
assigned to the aggregate group, otherwise it is assigned to the
mastic group. In the case that aggregate particles are adjacent
to mastic particles, an interface group is assigned. This leads
to the DEM heterogeneous microstructure shown on the right
side of Fig. 7.

After the DEM heterogeneous geometry has been created,
particle bond properties are assigned to each DEM particle
group. These bond properties include stiffness, strength, and
fracture energy. Stiffness and strength properties are provided
in both the normal and shear directions to account for separa-
tion and shear. The contact stiffness is determined using equa-
tion (4), the Poisson’s Ratio is taken as ν = 0.33, and the elastic
modulus E is equal to the initial mastic relaxation modulus
found using the IDT test. However, when the user-defined
viscoelastic contact model is used, the contact stiffness be-
tween particles in the mastic group is obtained from the mastic
relaxation modulus results. The maximum contact force and
maximum contact displacement for particles in the aggregate
group are approximately equal to those used in Kim et al. [6]
because the same type of aggregate was used in this study.
During the initial calibration phase of the following section,
the peak force of the coarse aggregate particle bonds was
increased by 27.9 N. This was done to account for global peak
force differences between the experiment and the DEM re-
sults, which were obtained using the initial set of fracture
parameters (before optimization of fracture parameters is per-
formed). Finally, the maximum contact force and fracture en-
ergy for particles in the mastic and interface group are obtain-
ed through the optimization process, as explained in the next
section. Fracture of asphalt concrete at −12 °C can lead to
cracking in both the mastic and coarse aggregates. However,
the majority of fracture occurred in the asphalt mastic and at
the interface of the coarse aggregate. Consequently, the focus
of the study was completed on mastic property optimization.2

In addition, although local mixed-mode fracture occurs in het-
erogeneous DEM simulations, only Mode I opening proper-
ties are optimized in the current study – this approach is used
because HMA is generally weak in tension.3

The interface (between aggregate and mastic) properties
follows the recommendations by Kim et al. [8], namely the

Force ( f  ,  f )

Separation (δ  , δ )

δt,maxδn,max

t,maxf

n,maxf
K

1
t

n

t

K
1

n

δ

δ

n t

n t

Fig. 6 Cohesive contact model between adjacent balls used in the
heterogeneous DEM models. The traction-separation relationships in
the normal (n) and tangential (t) directions are based on a linear softening
cohesive contact model

2 Future research could focus on aggregate fracture property identification
using fracture tests in conjunction with DIC measurements.
3 Additional future research could investigate the optimization of mixed-mode
fracture properties.
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maximum contact strength is about 90–100% of that of the
mastic, and the maximum contact opening displacement is
about 30% of that of the mastic. We chose these interface
contact properties because they have shown to be suitable
for DEM simulations of heterogeneous asphalt mixtures [4].
Research completed in the current study confirmed that the
assumed ratios by Kim et al. [8] were comparable with exper-
imental measurements of interface peak force and maximum
displacement by Hakimzadeh [31]. Therefore, these ratios are
used to obtain the fracture energy and cohesive strength for
particles in the interface group. This leaves us with fracture
energy and contact strength in the mastic group as the vari-
ables to be obtained through the optimization process.

Hybrid DIC-DEM Optimization Technique

Here we present a nonlinear optimization method to find the
cohesive fracture properties of SE(B) and DC(T) test speci-
mens. The method consists of minimizing the difference be-
tween the displacement fields from DIC and heterogeneous
DEM simulations. To quantify this difference, the DEM and
DIC displacement field vectors are measured at a number of
grid points, nn, near the notch tip. For each grid point, the
displacement field vector is measured for np different values
of CMOD. Then, the square of the Euclidean norm of the
difference between the DEM and DIC displacement field vec-
tors, obtained for all the grid points, is summed. This leads to
the following measure as shown in equation (5):

Φ λð Þ ¼ ∑
j¼1

np

∑
i¼1

nn

u i; jð Þ
DIC−u

i; jð Þ
DEM λð Þ

���
���
2

2
ð5Þ

where Φ(λ) is the difference function or objective function; λ
is the set of fracture parameters (e.g., cohesive strength and
maximum crack opening) used for each one of the DEM sim-

ulations; u i; jð Þ
DIC and u i; jð Þ

DEM are the displacement field vectors at
the grid point i for the jth value of CMOD.

A total of sixteen grid points near the notch tip (i.e., nn = 16)
are selected to measure the displacement fields for both DC(T)
and SE(B) geometries. The grid points are located at 4.5 and
9 mm on each side of the notch tip, and spaced 1.5 mm in the
direction parallel to the notch. In contrast to Shen and Paulino
[14, 15], we selected a total of n

p
= 10 CMOD values. The first

value of CMOD is chosen at the point of peak load on the
load-CMOD curve, and the following nine points are chosen
at CMOD increments of 0.05 mm. For the DC(T) models, the
peak load corresponds to a value of CMOD ≈ 0.10 mm, and
for the SE(B) models it corresponds to CMOD ≈ 0.05 mm.

The evaluation of Φ(λ) is expensive because performing
DEM simulations requires significant CPU time. The selec-
tion of an appropriate optimization algorithm is important to
obtain the set of fracture parameters λ that minimizes Φ(λ)
with a relatively small computational cost. In a typical opti-
mization problem, efficient Newton-like methods are suitable
choices to minimize the objective function. Although effi-
cient, these methods require at least evaluating the gradient
of the objective function, but this is computationally expen-
sive for our problem. Therefore, alternative optimization
methods, such as the derivative-free Nelder-Mead optimiza-
tion method, are explored [14, 15]. The Nelder-Mead method,
although simple and effective for the problems studied in [14,
15], is not suitable in our study. This is because, in general, the
Nelder-Mead method requires hundreds of iterations [i.e.,
hundreds of function evaluations as the one given in equation

ledomMEDerutcurtsorcimfoegamiyraniB

Identify 
centroid of balls

Generate 
DEM Microstructure

Fig. 7 Procedure used to develop
the heterogeneous DEM model
geometries. A binary image of the
microstructure (left) for each
geometry is used to locate the
centroid of the balls such that the
DEM models (right) resemble the
microstructure of the specimens
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(5)] to achieve a desired level of accuracy, and as previously
discussed, this is computationally expensive.

To minimize the required number of function evaluations,
additional alternatives are considered. For instance, McDonald
et al. [32] presented an optimization technique using radial
basis functions to obtain a continuous representation of the
objective function based on its values at a scattered set of
points. This continuous function, called the response surface
model, interpolates the objective function values at a given set
of parameter values, reducing the required computation time
dramatically.

Using the method by McDonald et al. [32] can lead to
many different solutions, because different response surface
models can be obtained for the same set of data points and the
same choice of radial basis function. To circumvent this issue,
the authors propose an alternative optimization method that
uses multivariate Lagrange interpolation to approximate the
objective function Φ(λ). The idea consists of obtaining a con-
tinuous multinomial P(λ) that interpolates the values of Φ(λ)
at a predefined set of fracture parameters λ(k), k = 1,…, n.
Because multivariate Lagrange interpolation is used, the mul-
tinomial P(λ) is uniquely defined. By construction, the inter-
polating multinomial P(λ) is aC∞ function. Once this function
is obtained, approximate values of the objective function and
its gradient can be obtained in the entire fracture parameter
space. Thus, efficient Newton-like methods can be utilized to
perform the optimization process on P(λ) avoiding evaluation
of Φ(λ).

The space of fracture parameters, λ, is defined next. As
explained in the previous section, only the contact strength
and fracture energy for particles in the mastic group are ob-
tained through the optimization process. As shown in Fig. 6,
we use a linear cohesive contact model (CCM). Hence, the
fracture energy between adjacent particles is defined in terms
of the contact strength (fn,max and ft,max) and the maximum
separation between particles (δn,max and δt,max). Therefore,
we can use these as the independent variables defining the
CCM. Moreover, we assume that the fracture properties for
the normal and tangential cohesive contacts are the same4 (i.e.,
fn,max = ft,max = fmax and δn,max = δt,max = δmax). Therefore, only
two independent parameters, fmax and δmax, are required to
define the space of fracture parameters, λ.

To obtain P(λ), the difference function Φ(λ), given by
equation (5), is evaluated at a given set of fracture parameters.
This set of fracture parameters is determined by varying fmax

between f 1max and f nmax, and δmax between δ
1
max and δ

n
max. This

leads to a grid of fracture parameters, as shown in Fig. 8. The
center of the parameter grid is chosen based on a pair of cal-

ibrated fracture parameters f calmax; δ
cal
max

� �
, obtained in accor-

dance to the study by Kim [4]. Kim’s study suggested that

the cohesive strength and fracture energy to be used with the
DEMmodels should be approximately 74% of the experimental-
ly measured values. Based on the results in [4], we expect that the
optimum set of fracture parameters f optmax; δ

opt
max

� �
that leads to an

accurate prediction of local fracture behavior of the asphalt spec-

imens is in the vicinity of f calmax; δ
cal
max

� �
. For the asphalt mixture

tested in this study, the calibrated fracture parameters obtained for

the SE(B) geometry are f calmax; δ
cal
max

� � ¼ 71N; 1:14� 10−4m
� �

.
After several attempts, we found that a grid of fracture parameters

w i t h f max ¼ 0:8; 0:9; 1:0; 1:1; 1:2½ � f calmax, a n d δmax ¼
0:8; 0:9; 1:0; 1:1; 1:2½ �δcalmax provided enough breadth to find the
optimum of the objective function Φ(λ) for the SE(B) geometry.
For the DC(T) geometry, an adequate grid of fracture parameters

was found to be f max ¼ 0:8; 0:9; 1:0; 1:1; 1:2; 1:3½ � f calmax, and

δmax ¼ 0:8; 0:9; 1:0; 1:1; 1:2; 1:3½ �δcalmax. The use of 10% inter-
vals for both fmax and δmax helps to reduce the number of simula-
tions needed to find the optimal solution. If a more detailed level
of accuracy is desired, a finer grid of fracture parameters can be
used. However, this would require performing more DEM frac-
ture simulations.

Then, the inverse optimization problem using the Lagrange
interpolating multinomial P(λ) is formulated as shown below
in equation (6):

min
f max;δmaxð Þ

P f max; δmaxð Þ ¼ ∑
n

p¼1
∑
n

q¼1
Φpqℓp f maxð Þℓq δmaxð Þ;

Φpq ¼ ∑
j¼1

np

∑
i¼1

nn

u i; jð Þ
DIC−u

i; jð Þ
DEM f pmax; δ

q
max

� ����
���
2

2
;

ℓp f maxð Þ ¼ ∏
n

m ¼ 1
m≠p

f max− f
m
max

f pmax− f
m
max

; ℓq δmaxð Þ ¼ ∏
n

m ¼ 1
m≠q

δmax−δmmax

δqmax−δ
m
max

ð6Þ

whereΦpq is the difference function computed from equation (5);
ℓp(fmax) are 1-DLagrange polynomials for the parameter fmax; and
ℓq(δmax)are the 1-D Lagrange polynomials for the parameter δmax.

4 This is questionable, however, in the absence of experimental information,
this assumption was used.

f max

δ max

f max
1 f max

n

δ max
1

δ max
n

( f    ,max
cal

δ     max
cal (

Fig. 8 Grid of fracture parameters used to obtain the interpolating
multinomial P(λ)
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The inverse problem shown in the optimization statement
(6) uses the continuous function P(λ) which interpolatesΦ(λ)
at each point f imax; δ

j
max

� �
, for i, j = 1,…, n in the grid of

fracture parameters. Thus, efficient Newton-like methods
can be utilized to perform the optimization process on P(λ)
instead of Φ(λ). This step saves CPU time due to the reduced
number of simulations required in the optimization.

Results

The first subsection below shows the experimental
load-CMOD curves as well as the DIC results for both
SE(B) and DC(T) geometries. Then, the next two sub-
sections provide the optimization results for both ge-
ometries, following the procedure discussed in the pre-
vious Section.

Experimental Results

The load-CMOD curves obtained from both the DC(T)
and SE(B) experiments are shown in Fig. 9. The opti-
mal DEM simulation results are also shown in Fig. 9,
however, they will be discussed subsequently. The
SE(B) test yields a CMOD fracture energy that is
156.4 J/m2 higher than the DC(T) test, and a peak load
1.13 kN higher than the DC(T) test. Similar results were
found by Wagoner [3] when comparing SE(B) to DC(T)
test results for a common asphalt mixture. Greater load
capacity and fracture resistance is found in the SE(B)
geometry because of the amount of energy consumed in
bending. As stated by Wagoner [3], the DC(T) test is
more prevalently used in the asphalt industry than the
SE(B) due to the circular shape of asphalt core samples
and their direct tensile load application.

The DIC full displacement fields (which include rigid
body motions) for the DC(T) and SE(B) geometries are

shown in Figs. 10 and 11, respectively. We observe that
the rigid body motion associated with the DC(T) test is
more pronounced than in the SE(B) test. This is due to
the difference in the setup of the two experiments. For
instance, in the DC(T) test, the specimen is loaded with
pins inserted in the two pin holes. The bottom pin is
held fixed, while the top pin moves vertically during the
test. This allows for vertical translations and rotations,
as observed in Fig. 10. The SE(B) test, however, con-
sists of a beam with a center notch, which is loaded in
a three-point bending test configuration. From a practi-
cal viewpoint, due to the more symmetric nature of this
test, the rigid body motion is smaller than the one in
the DC(T) test. Further observations show that the DIC
displacement fields for the DC(T) geometry display
greater crack tortuosity, which may be a function of
the direct tensile loading method in the DC(T) test.

Numerical SE(B) Optimization Results

The optimization results for the SE(B) models are
shown in Fig. 12. The elastic model results are shown
in Fig. 12a, and the viscoelastic ones in Fig. 12b. The
red dots correspond to the values of Φpq (see second
expression in the optimization statement (6)) computed
at the grid of fracture parameters described in the
BHybrid DIC-DEM Optimization Technique^ section.
The values of Φpq were used to construct the Lagrange inter-
polating multinomial for the optimization process. This mul-
tinomial corresponds to the surface interpolating the red dots
in Fig. 12. Then, the Newton-Raphson method was used to
determine the corresponding set of optimum fracture parame-
ters f optmax; δ

opt
max

� �
. For the elastic models, we obtained

f optmax; δ
opt
max

� � ¼ 71N; 1:2� 10−4 m
� �

; and for the viscoelastic

models, we obtained f optmax; δ
opt
max

� � ¼ 62N; 1:1� 10−4 m
� �

. A
comparison can be drawn between those results. The
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Fig. 9 Numerical and experimental Load-CMOD curves for: (a) SE(B) test; and (b) DC(T) test. The numerical results shown here correspond to those
obtained from the set of fracture parameters associated to the minimization statement (6)
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difference in the optimization results between Fig. 12a and
12b demonstrates how viscoelastic creep affects DEM-
measured displacements. As can be inferred from Fig. 12b,
when the contact strength, fmax, is larger, more viscoelastic
deformations are allowed before softening occurs. Therefore,
the difference between the DEM and DIC displacement mea-
surements increases. To compensate for creep effects, the op-
timized fracture parameters in the viscoelastic models are
slightly smaller than the ones in the elastic models. Finally,
the experimental Load-CMOD is compared with the simula-
tion results obtained with the optimized DEM fracture param-
eters, as shown in Fig. 9a. We observe that the optimal simu-
lation results for both the elastic and viscoelastic simulation
cases match the global Load-CMOD. Thus, this coupled
DEM-DIC approach is applicable to Mode I simulations of
an asphalt concrete beam geometry.

Numerical DC(T) Optimization Results

The optimization results for the DC(T) models are shown in
Fig. 13. As stated previously, the values of Φpq in the

optimization statement (6) were used to construct the
Lagrange interpolating multinomial are represented by red
dots. The green dots in Fig. 13 show the set of optimum
fracture parameters obtained, which are f optmax; δ

opt
max

� � ¼ (85

N, 1.3 × 10−4 m) and f optmax; δ
opt
max

� � ¼ (83 N, 1.2 × 10−4 m) for
the elastic and viscoelastic models, respectively. In regard to
creep effects, similar observations to the SE(B) are found for
the DC(T) models. That is, as the contact strength increases,
the difference between DEM and DIC displacements in-
creases. Thus, the optimal set of fracture parameters relative
to the one from the elastic models shifts. As observed for the
SE(B) test, the optimal DC(T) simulation results for both the
elastic and viscoelastic models cases match the global Load-
CMOD response shown in Fig. 9b. Consequently, this
coupled DEM-DIC approach is applicable to Mode I simula-
tions of an asphalt concrete DC(T) geometry as well.

Comparing the results from both the SE(B) and DC(T)
tests, we observe that the optimized contact strength for the
SE(B) models is smaller than that one for the DC(T) models.
This difference is mainly attributed to the fact that the SE(B)
specimens are 25% thinner than the DC(T) specimens. This
correlates with the known fact that asphalt concrete exhibits
size-dependency, and specimen thickness affects material
strength [3]. Additional differences in the optimization results
are attributed to load application rates in both tests. For in-
stance, the SE(B) test uses a loading rate that is smaller than
the one used for the DC(T) test. The reduced loading rate in
the SE(B) test allows for a greater amount of creep in the
material, potentially affecting the optimization results.

Summary, Conclusions and Extensions

In this study, experimental DIC and numerical DEM displace-
ment fields from two standard fracture tests are used to obtain
the local fracture properties of asphalt concrete. Unlike previ-
ous studies, no predefined crack path is specified for the het-
erogeneous DEM simulations. A nonlinear optimization
method is utilized to obtain the cohesive fracture properties
of asphalt mixtures, which consists of computing the differ-
ence between DIC and DEM displacement fields for a
predefined set of fracture parameters. Then, multivariate
Lagrange interpolation is used to convert this discrete set of
difference measurements into a continuous function, which is
minimized using a Newton-like optimization algorithm. The
DIC displacement fields are obtained via the Subset Splitting
algorithm. For the DEM models, the predominantly mode-I
fracture behavior is simulated using a linear softening cohe-
sive contact model, where different fracture properties, includ-
ing maximum tensile force and maximum crack opening,
were varied within predefined values.

The proposed method is applied to two standard fracture
test geometries: 1) an SE(B) under three-point bending
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Fig. 10 DIC displacement field in the vertical direction (uy) for a
DC(T) test
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geometry; and 2) a DC(T) geometry. The optimized set of
fracture parameters from this nonlinear optimization method
led to DEM results which are consistent with the experimental
results for both SE(B) and DC(T) geometries. Thus, this meth-
od is a promising optimization approach when function eval-
uations are expensive; e.g., when simulating fracture in het-
erogeneous materials such as asphalt concrete. It can also be
observed that:

& The difference between the optimal peak force for
the SE(B) and DC(T) data sets was likely due to
the 25% reduction in thickness found using the
SE(B) geometry. If the viscoelastic DC(T) peak

force was reduced by 25%, the optimal solutions
would be approximately equal.

& The relative difference between the viscoelastic and
elastic results was higher in the SE(B) geometry as
compared to the DC(T). The largest differences were
observed in the peak force, most likely due to the
nature of the SE(B) geometry (bending/fracture),
where the dissipative effects of the bulk viscoelastic-
ity are more pronounced.

The next step in using this hybrid DIC-DEM approach will
be to develop a library of optimum fracture properties for an
array of asphalt mixtures. This library could be used in
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conjunction with 2D or 3D DEM simulations of pavement
structures to simulate asphalt pavements undergoing thermal
and vehicular loading at low temperatures. The simulation
results could be used in academia and higher level mixture
design firms to determine if an asphalt mixture has the poten-
tial to withstand a specified number of load applications.
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