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Recent advances in multi-material topology optimization and additive manufacturing have enabled the design
and fabrication of complex, high-performance structures. However, most existing approaches focus on stiffness
maximization and overlook local material failure, which may render non-functional designs that fail under
applied loading. Designing functional multi-material structures that can withstand mechanical loads requires
accounting for the distinct failure behaviors of each candidate material. This study presents a framework for
stress-constrained multi-material topology optimization that incorporates material-specific failure via a unified
yield function capable of modeling pressure-independent and pressure-dependent materials, thus capturing the
tension-compression strength asymmetry typical of polymers used in multi-material additive manufacturing
(e.g., PolyJet 3D printing). Our method explicitly imposes local stress constraints for each material within
every finite element, without relying on interpolated failure models. To ensure scalability and robustness, we
solve the constrained optimization problem using the augmented Lagrangian method. We demonstrate the
effectiveness of our approach through several numerical examples that highlight the benefits of combining
materials with tension-compression strength asymmetries to reduce structural mass. Experimental validation
of a fabricated design confirms the ability of our approach to predict structural performance and yield limits

of multi-material, optimized components.

1. Introduction

Simulation-driven design techniques such as topology optimization
are transforming engineering practice by enabling the exploration of
complex design spaces and the creation of innovative, organic struc-
tures that surpass the capabilities of traditional analytical methods and
human intuition. Despite these advances, identifying optimal designs
remains a significant challenge, particularly when considering multiple
materials with distinct mechanical properties and failure behaviors.
While most existing formulations are limited to single-material struc-
tures, multi-material topology optimization offers a broader design
space by enabling the strategic integration of materials with comple-
mentary properties, thereby enhancing mechanical and functional per-
formance. Building on our previous work on stress-constrained topol-
ogy optimization for lightweight, single-material structures [1], we
extend our methodology to address the design of multi-material struc-
tures, thus offering greater design flexibility and the potential for
substantial performance gains.

In this study, we introduce a multi-material stress-constrained for-
mulation that enforces a broad class of stress constraints through a
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unified yield function [1]. Based on our previous work [1-3], we em-
ploy the augmented Lagrangian (AL) method to solve the optimization
problem, ensuring mathematical rigor while accommodating a large
number of local stress constraints efficiently. At each optimization iter-
ation, our AL-based framework imposes one local stress constraint per
element and candidate material. Although we do not include explicit
interfacial stress constraints, this modeling choice is supported by our
experimental results on PolyJet-printed specimens, which exhibited no
interfacial failure. By incorporating multiple materials with distinct
failure criteria, we highlight the potential of exploiting their diverse
mechanical properties to achieve lighter, more efficient structures.
The remainder of this paper is organized as follows. Section 2 out-
lines the motivation for this work and reviews relevant literature in the
field. In Section 3, we introduce the multi-material stress-constrained
topology optimization problem and discuss the AL-based solution strat-
egy. Section 4 presents several numerical examples that demonstrate
the capabilities of the framework, while Section 5 details the printing
process, material characterization, and experimental validation of a
selected design. Section 6 summarizes the main contributions and im-
plications of this study. Afterward, we present several appendices that
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provide supporting technical details. Appendix A provides details of the
sensitivity analysis, Appendix B describes the postprocessing subroutine
used to eliminate necking at the interfaces between materials, Appendix
C presents convergence plots for all the examples discussed in this
work, Appendix D discusses the sensitivity of the framework to selected
algorithmic parameters, and Appendix E lists the nomenclature used
throughout the paper.

2. Motivation and related work

Since its introduction by Bendsge and Kikuchi [4], topology opti-
mization has evolved to handle a variety of design problems, including
multi-material designs. Multi-material topology optimization has been
applied to a wide range of problems, including the design of compliant
force inverters [5], composites with tunable thermal expansion [6] or
extremal bulk modulus [7], truss structures [8], and optimally graded
structures with targeted eigenfrequencies [9]. Despite this progress,
existing approaches often lack the ability to incorporate stress con-
straints explicitly or to address the distinct failure behaviors of multiple
materials within a unified framework.

Given the limitations of most existing approaches, there is a critical
need for a robust multi-material topology optimization framework that
explicitly enforces stress constraints and captures the distinct failure
criteria of different candidate materials. Developing such a framework
requires addressing several key challenges, including handling a large
number of stress constraints, considering multiple failure criteria, and
resolving the singularity phenomenon inherent in stress-constrained
problems [10,11]. Additionally, the framework must employ effective
material interpolation schemes that discourage intermediate densities
and prevent material mixing at the end of the optimization iterations.

Multiple material interpolation methods have been developed since
Thomsen [12] first studied the topology optimization of structures
made of one or two isotropic materials, with the majority of these meth-
ods extending the Solid Isotropic Material with Penalization (SIMP)
interpolation scheme [8,13-15]. Among these, Discrete Material Op-
timization (DMO)-based approaches [16-18] have emerged as a par-
ticularly effective approach for problems involving many candidate
materials. In DMO-based approaches, each design variable corresponds
directly to the density of a specific material, providing a direct repre-
sentation of material distribution. Their simplicity and scalability have
made DMO-based interpolation schemes widely adopted in density-
based topology optimization of multi-material structures [8,18-20]. In
this work, we adopt the DMO-based interpolation scheme by Sanders
et al. [18], which introduces a parameter that controls the extent of pe-
nalization of material mixing. This strategy ensures robust convergence
and manufacturability, particularly when scaling to a large number of
candidate materials.

Beyond the inherent complexities of multi-material topology opti-
mization, incorporating stress constraints into the optimization frame-
work introduces further complexity. Being a local quantity, stress must
remain within material-specific limits at any point within the domain to
prevent material failure. Enforcing these constraints directly leads to a
large number of local constraints, which renders the optimization prob-
lem computationally intensive. To reduce the computational cost, many
studies have adopted stress aggregation techniques [21-26], which
approximate the maximum stress in the design domain using smooth
global measures such as the Kreisselmeier-Steinhauser (KS) [27] and
the p-norm functions [28]. Although these approaches reduce the
number of constraints, the quality of the solutions heavily depends on
the approximation parameters, and their effectiveness diminishes as the
number of local constraints increases.

An alternative strategy employed in the literature involves using
clustering techniques [29-31], which aggregate stress over subregions,
or clusters, within the domain. This strategy also reduces the number
of constraints and improves computational tractability. However, the
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quality of the results obtained using these methods is highly sensitive
to how the clusters are defined and how many are used.

In contrast to aggregation-based approaches, the augmented La-
grangian (AL) method [32-34] offers a scalable and effective frame-
work for solving topology optimization problems with numerous local
constraints. In the AL method, a constrained optimization problem
is solved as a sequence of unconstrained problems aimed to mini-
mize the augmented Lagrangian function. This approach provides a
robust framework for handling a wide range of optimization problems,
including those with degenerate constraints [35,36].

The AL method has been employed to solve stress-constrained topol-
ogy optimization since the early 2000s. However, early implemen-
tations of this method exhibited limitations in robustness and con-
vergence. For instance, Pereira et al. [37] applied the AL method to
density-based topology optimization using relaxed stress constraints,
but their approach struggled to converge to clear 0/1 designs. Similarly,
Emmendoerfer and Fancello [38,39] implemented an AL framework
into the level-set topology optimization method to enforce local stress
constraints, but their results were sensitive to parameter choices, which
limited their general applicability. For a more detailed discussion of
the early applications of AL-based approaches to stress-constrained
topology optimization, interested readers are referred to Senhora et al.
[40].

Recent work has overcome the limitations observed in early applica-
tions of the AL method to the stress-constrained problem, with modern
formulations yielding robust, mesh-independent solutions [1,2,41]. In
particular, these methods achieve stable convergence under mesh re-
finement and can handle problems with thousands to millions of local
stress constraints. The AL method also enables efficient sensitivity anal-
ysis using the adjoint method, requiring only a single adjoint vector!
to be computed at each optimization step—an important advantage for
large-scale problems. Senhora et al. [40] demonstrated the efficiency
of the AL method by solving static problems with over one million
local stress constraints in a few hours on a standard desktop computer.
Building on this, Giraldo-Londofio and Paulino [2] demonstrated that
the computational cost of the AL method is comparable to that of a
standard compliance minimization problem, with the primary overhead
arising from the computation of the adjoint vector. Extending the
method further, Giraldo-Londono et al. [42] applied the AL framework
to transient dynamic problems, demonstrating its ability to handle more
than 200 million constraints. Collectively, these studies highlight the
potential of the AL method as a powerful and scalable approach for
practical engineering design.

Beyond the challenge of handling a large number of stress con-
straints, another major challenge in stress-constrained topology op-
timization is the stress singularity phenomenon. This issue was first
reported by Sved and Ginos [10] and later by Kirsch [43] when dealing
with truss optimization under stress constraints. The singularity phe-
nomenon arises when the optimal solution lies in a lower-dimensional,
degenerate region of the design space that standard optimization meth-
ods cannot access, often leading to suboptimal designs. This problem
has been addressed using two main strategies: constraint relaxation
techniques [37,44-46] and vanishing constraints [46].

Constraint relaxation techniques address the singularity problem by
softening the stress constraints (e.g., as in the e-relaxation approach
by Cheng and Guo [44], where a constraint of the form g(z) < 0 is
converted into a constraint of the form g(z) < ¢). Although effective,
constraint relaxation techniques alter the shape of the design space
and may yield infeasible solutions that violate the original, unrelaxed
constraints. In contrast, the vanishing constraint approach preserves
the shape of the feasible domain by introducing constraints that vanish

1 This is valid only for linear and nonlinear elastic systems with a single
load case. For example, multiple load cases require the solution of multiple
adjoint problems, as shown in Appendix A.
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Table 1
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Comparison between stress-constrained multi-material topology optimization formulations.

Approach Representative works

Multi-material handling

Validation Observations

Global (e.g., p-norm) Jeong et al. [47], Chu
et al. [55], Chu et al.
[48], Xu et al. [49], Chen
et al. [52], Liao et al.

[56], Yaghoobi et al. [57]

Mises)

Single yield criterion (von

Loses control over local
nature of stress and quality
of solutions are parameter
dependent

Numerical only

Local (e.g., AL method) Kundu et al. [53], Kundu
and Zhang [58], Ding
et al. [54], Kundu and

Zhang [59]

Distinct yield criteria (e.g.,
von Mises, Drucker—Prager,
Tsai-Wu) with yield

criteria interpolation [58]

Yield function interpolation
adds nonlinearities and
results depend on
parameter tuning

Mostly numerical,
with one showing
experimental results

This work -

Distinct yield criteria,
without yield function
interpolation

Overcomes limitations of
interpolation approaches

Numerical and
experimental

(i.e., become zero) as the corresponding element density approaches
zero, thus avoiding explicit constraint relaxation [40]. Building on the
linear vanishing constraint by Cheng and Jiang [46], Giraldo-Londofio
and Paulino [1] introduced a polynomial vanishing constraint that has
proven effective when solving topology optimization problems with
local stress constraints. The polynomial vanishing constraint has been
successfully employed in the topology optimization of structures made
from pressure-independent or pressure-dependent materials [1], struc-
tures under general dynamic loading [42], structures constrained by the
first principal stress [3], and structures made of nonlinear materials [2].

While significant progress has been made for single-material struc-
tures, stress-constrained multi-material topology optimization remains
less mature. Most existing approaches approximate material failure
using interpolated stress measures, typically based on the von Mises
criterion. For example, Jeong et al. [47] introduced the Separable Stress
Interpolation (SSI) scheme to apply von Mises stress constraints in
multi-material designs, while Chu et al. [48] extended this concept
within the level-set framework. Other studies have adopted global
p-norm stress measures based on the von Mises stress to solve op-
timization problems involving mass minimization [49], compliance
minimization [50], stress minimization under mass constraints [51],
and volume minimization under thermomechanical loads and stress
constraints [52].

However, the von Mises criterion is not suitable for materials that
exhibit tension-compression strength asymmetry or sensitivity to hy-
drostatic pressure, such as concrete, polymers, and foams, as well
as the polymeric materials commonly used in multi-material addi-
tive manufacturing. In the context of single-material topology opti-
mization, Giraldo-Londofio and Paulino [1] addressed this limitation
by introducing a unified yield criterion capable of reproducing several
classical pressure-independent and pressure-dependent yield criteria,
including von Mises, Drucker—Prager, Tresca, Mohr-Coulomb, Bresler—
Pister, and Willam-Warnke. Kundu et al. [53] later extended this
concept to stress-constrained multi-material topology optimization and
used a SIMP-like yield function interpolation scheme to enforce stress
constraints across different materials. While promising, a key limitation
of this approach is that the interpolated yield surfaces at intermediate
densities lack physical meaning and may overestimate material strength
unless the interpolation parameters are carefully tuned. A similar is-
sue arises in the work of Ding et al. [54], who proposed a scalar
unified Stress Yield Factor (SYF) that combines the von Mises and
Drucker-Prager criteria into a single, interpolated yield function per
element. Although effective for that specific combination of yield crite-
ria, the SYF approach does not generalize easily to other yield functions
and introduces additional parameters that influence the interpolation
behavior.

An overview of existing studies on stress-constrained multi-material
topology optimization is provided in Table 1. Among the studies listed
in the table, only a limited number of them explicitly consider distinct
yield criteria [53,54,59]. Despite differences in their formulations,
these methods rely on nonlinear interpolation of yield functions to

combine multiple material failure behaviors into a single, approximate
criterion, which introduces additional assumptions and complexity.
While these strategies reduce the number of constraints per element
from m to one, where m is the number of candidate materials, they
introduce approximate, non-physical yield surface representations, par-
ticularly during early optimization stages when intermediate densities
and material mixing are common. These methods also require param-
eter tuning to prevent strength overestimation when material mixing
is present, and add further nonlinearities to an already highly non-
linear optimization problem, increasing the likelihood of producing
suboptimal solutions.

To address the challenges discussed above, this study adopts a
local formulation that assigns one stress constraint per element and
per candidate material, eliminating the need to interpolate between
yield criteria. Each material retains its own failure criterion, ensur-
ing strict enforcement of stress constraints throughout the optimiza-
tion process and enabling clear material separation based on local
strength demands. This approach does not require tuning yield surface
interpolation parameters and directly avoids strength overestimation
by enforcing each material failure criterion separately. Although our
approach requires imposing a larger number of stress constraints be-
cause it requires enforcing m constraints per element instead of one,
the overall computational cost remains comparable to that of prob-
lems in which yield criteria interpolation is used, as the augmented
Lagrangian method efficiently handles the expanded constraint set.
Notably, despite enforcing one stress constraint per element and per
candidate material, the sensitivity analysis still requires only a single
adjoint vector, just as in the single-material case [1,2]. Importantly,
our study is among the first to experimentally assess the performance of
multi-material structures designed through stress-constrained topology
optimization, offering direct evidence of structural performance and
demonstrating the practical viability of the proposed framework.

3. Problem formulation and methodology

This section discusses the formulation of the stress-constrained
multi-material topology optimization problem introduced in this study
and the associated AL-based solution strategy. We begin by defining
the optimization problem, which seeks to minimize a weighted mass
objective while enforcing one stress constraint per element and can-
didate material. We then provide details of the unified yield criterion
by Giraldo-Londono and Paulino [1], which we use to characterize the
failure behavior of each candidate material. Finally, we outline the
AL-based strategy employed to solve the stress-constrained topology
optimization problem efficiently.

3.1. Multi-material stress-constrained formulation

Our formulation aims to find the lightest structure capable of with-
standing applied loads without failing locally at any point within the
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domain. We prevent material failure by imposing local stress con-
straints, g,;, at the centroid of each finite element, £ =1,..., N, in the
domain, and for each candidate material, i = 1, ..., m. The optimization
problem is formulated as follows:

Z:rl:ﬂiATVi
Z:’;] ViATl
=1,....,N;i=1,....m

min f(@)=
ZE[O,I]NX’”

1
s.t. gsi(z,u) <0, 0

with: Ku=F.

Here, f(z) represents a weighted mass ratio, expressed in terms of the
design variable matrix, z = {z,,... ,zfm}g’:l. Each design variable,
zy; € [0,1], indicates the presence of material i in element #. The
parameter y; is a material-specific weight factor, which may correspond
to properties such as mass density or material cost. The vector A =
{|.Qf|};v=1 contains the area (in 2D) or volume (in 3D) of each finite
element, while V; = my (y;) represents the vector of volume frac-
tions for candidate material i, computed via the threshold projection
function [60]:
tanh(f#) + tanh (f (yz; — 7))
my (yz;) = — - —, ()]
tanh(f#) + tanh(f(1 — 7))

where parameters £ and 7j control the aggressiveness and cutoff density
of the projection (see Appendix D.2), respectively, and y; (z;) = Pz; is
the vector of filtered densities for candidate material i, computed using
the polynomial filter [61]:

q
s, s
1 .
= N# with w;; = max 0,1—T2 R
Zk=1 Wi Ay

3)

F;

where ”xi - x;||is the Euclidean distance between the centroids of
elements i and j, R is the filter radius, and gq is the filter exponent.
The displacement field, u, is obtained by solving the linear equilib-

rium equation Ku = F, where K is the global stiffness matrix and F is
the global load vector. The stiffness matrix is assembled from element
contributions as:

N m
K=Yk, withk, = W,k and k;, = / BD,,B,dx. Q)

¢=1 i=1 2
Here, Z?’:l denotes the standard finite element (FE) assembly oper-
ator. For each element ¢, k,; represents the stiffness matrix when
the element is filled entirely with material i, where B, is the strain-
displacement matrix, Dy, is the material moduli matrix of candidate
material i, and £, is the domain occupied by the element. The effective
stiffness matrix, k;, is then computed as a weighted sum of the material
stiffness matrices k,;, with weights W, = my, (E,,;) obtained from the
modified Discrete Material Optimization (DMO) interpolation function
[18]:

m

my, (Et’i)=EfiH(1_TEfj)’ (5)

j=1
J#

where E,; are the penalized densities for element # and material i,
and r € [0,1] is a mixing penalty factor that controls the extent of
penalization of material mixing. For instance, a value of = = 0 imposes
no penalization, allowing material mixing, while a value of r = 1 fully
penalizes material mixing, promoting distinct material phases.

The penalized densities, E;,; = mg (V,;), are computed using the
SIMP interpolation function,

mg (V) =e+ (-7, (6)

where p is the penalization power and ¢ < 1 is an Ersatz parameter used
to prevent numerical singularities when V,; - 0. With these variable
transformations defined, Algorithm 1 summarizes the global stiffness
matrix computation in a concise step-by-step form.

Fig. 1 illustrates the behavior of the modified DMO interpola-
tion function used to compute the interpolated stiffness matrix. For
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Algorithm 1 Step-by-step computation of the global stiffness matrix

Step 1. Compute filtered densities (Eq. (3)):

N
Yei = Z Pz
j=1
Step 2. Obtain the projected (physical) densities (Eq. (2)):

Vei = my(yep).

Step 3. Evaluate the penalized densities (Eq. (6)):

Esi = mgWe).

Step 4. Evaluate the element-wise material weights using the modified DMO
interpolation function (Eq. (5)):

Wei = my (Eg)).

Step 5. Obtain the effective stiffness matrix of element ¢ and assemble the
global stiffness matrix (Eq. (4)):

m N
k, = D Wyky, K= Yk
=1

i=1

demonstration purposes, we consider a simplified case in which the
DMO function is used to compute the effective Young’s modulus of
an element # when considering two candidate materials with Young’s
moduli Yio =1, i = 1, 2. The effective Young’s modulus is given by
Y, = Zf:] W, Y. Figs. la—c illustrate how the interpolation function
evolves as 7 and p vary. In Fig. 1a, for r = 0 and p = 1, the interpolation
reduces to a linear combination of the individual Young’s moduli.
Because material mixing is not penalized in this case (i.e., = = 0),
the topology optimization results would produce intermediate density
values and mixed-material regions. As shown in Fig. 1b, increasing
7 and p progressively reduces the efficiency of intermediate densities
and material mixing.? Specifically, p > 1 penalizes intermediate values
of V,; (analogously to the single-material SIMP interpolation), while
7 € (0, 1] penalizes material mixing (i.e., having V,, and V,, be simul-
taneously nonzero becomes less efficient as = increases). In the limiting
case shown in Fig. 1c, when 7 = 1, the interpolated modulus drops to
zero if both penalized densities are equal to one, and the maximum
stiffness is achieved only when one material density equals one and
the other equals zero. Hence, p > 1 discourages intermediate density
values, while 7 = 1 strongly discourages material mixing, promoting
discrete zero-one solutions without V,, and V,, being simultaneously
equal to one within a given element.

3.2. Stress constraint definition

As previously discussed, our formulation prevents material failure
by enforcing local stress constraints on each element # and candidate
material i. In this study, we adopt the polynomial vanishing constraint
introduced by Giraldo-Londofio and Paulino [1], which extends the tra-
ditional linear vanishing constraint [46] by including a cubic term that
penalizes constraint violation more severely. The cubic term drives the
solution to a density distribution with overall lower stresses [2] com-
pared with the linear vanishing constraint. The polynomial vanishing
constraint is defined as:

8@ )= EpAy (A2, +1) <0, £=1,.. N;i=1,..,m, %)

2 In the context of this example, material mixing occurs when both V,, and
V,, are simultaneously nonzero.
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Fig. 1. Influence of penalization parameters = and p on the Young’s modulus interpolation Y, for 2 candidate materials. Panels correspond to (a) 7 =0, p=1;
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6
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Fig. 2. Comparison between the traditional vanishing constraint [46] and the
polynomial vanishing constraint [1] as a function of A,,. Values of A, > 0
indicate stress constraint violation.

where E,; are the penalized densities and A,; is a unified criterion
that characterizes the failure behavior within element # for candidate
material i. By including E,;, the constraint naturally vanishes as the
material density approaches zero, thereby avoiding stress singularities
in void regions. Fig. 2 provides a graphical representation of the
polynomial vanishing constraint and compares it with the traditional
linear vanishing constraint by Cheng and Jiang [46].
The unified failure function, A,;, is defined as:

Agi=oy -1, ()]

where ¢/ is a dimensionless equivalent stress measure that generalizes
multiple classical yield criteria. The equivalent stress measure is given
by:

ool = &(0)\/3J, + I, + 717, 9)

where I, is the first invariant of the Cauchy stress tensor, o,;, and J, is
the second invariant of the deviatoric stress tensor, s,,;. The scalar terms
@(0), f, and 7 define the shape of the yield surface and are chosen to
match specific failure criteria [1].

The stress invariants are computed as:

I, = Moy, 10)
and

1 p—
Jy= ga;iv%, 11)

where M = [1 1 0] and 64, = [6,, 65 o01,]7 for 2D problems, and
M=[111000]and 6,; = [0}, 05, 033 033 013 61,]" for 3D problems.
Likewise, the matrix V used to evaluate the second invariant of the
deviatoric stress tensor is given by

_ 1 -1/2 0
v=| -1/2 1 o 12)
0 0 3

for 2D problems and

1 -1/2 -1/2 0 0 0

—-1/2 1 -1/2 0 0 0

= | -1/2 -1/2 1 0 0 0
V= 0 0 0 3 0 0 as

0 0 0 0 3 0

0 0 0 0 0 3

for 3D problems.
The Cauchy stress vector for candidate material i is evaluated at the
centroid of element ¢ as:

6 =DyBouy, 14

where D, is the material moduli matrix of candidate material i, B, is
the strain displacement matrix at the centroid of element #, and u, is
the displacement vector of element ¢.

The term @(0) in Eq. (9) is referred to as the deviatoric function [1],
and it defines the shape of the yield surface when intersected by the
deviatoric plane. The deviatoric function is given by

. Acos? 0+ B
&) = - —, (15)
Ccosf+VDcos20+ E
where
é:%sin‘l[gsin39]+§, £<1, (16)
and
1 . 4 3\/§ J3 g T

== [ S I —Z <<=

0 3 sin ( > ) 6_6’_6, aa7)
2

is the Lode angle [62], which is a function of the third invariant of the

deviatoric stress tensor given by

1 1.,
J=30(h-351) 18
3= 3h (-5l (18)

for 2D problems and by
Jy = +2 — (51162 + 55567, + 53363, 19
3 = 511522533 023013012 $11053 T 82203 T 5330,
for 3D problems, where s,,, u, v = 1,...,3 are the components of the
deviatoric stress tensor,
I =1

Sy =0pi — ?M . (20)
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Table 2

Parameters defining the unified equivalent stress measure.
Failure criterion a9)

A B c E ¢ 0 B 7

von Mises® 0 aim 0 1 1 0 0 0
Drucker—Prager” 0 z *{‘: 0 1 1 0 x ’Z' 0
Willam-Warnke® Ay By, Cy Dy, Ey, 1 H (Zf::,l 0
Mohr-Coulomb Ayc 0 1 0 <1 Fi 2 7;7, 0

®

oy denotes the von Mises yield stress.

-

o, denotes yield stress in equibiaxial compression.

4 Apye =Qa/3)\/3+(B/)* and tand = aﬂi\/? where « = Z;’: and f = ‘2’6_;’

<O

As shown by Giraldo-Londofio and Paulino [1], a suitable choice of
parameters A—E, ¢, 8, §, and §, conducts to the representation of several
classical yield criteria including von Mises, Drucker-Prager, Willam—
Warnke, and Mohr-Coulomb. Table 2 presents the parameters used to
generate the yield surfaces for the various criteria employed in this
study. The parameters for the Willam-Warnke yield criterion used in
Section 5 are defined as A = Ay,, B= By, C=Cy,, D=Dy,, E = Ey,
which are given by

AW=—\/ r—r =L %(rc

s ,)2, Cy =2r, (r rz),
DW—4r (r —2r,) (rf—rrz),

Ew—r (rc—2r) ( —4r,rﬁ),
21)
where
= \/E %% and = \/E S /R "))
5 30,0, + 0. ((rb - 6,) 5 o, (20—,, + 6,)

with o, and o, representing the yield stress in uniaxial compression and
uniaxial tension, respectively, and ¢, denoting the yield stress in equibi-
axial compression. This formulation expands the design space for multi-
material structures by exploiting the distinct mechanical responses
of different materials. For instance, it could allow the combination
of pressure-dependent materials with high compressive strength and
ductile materials with high tensile strength.

For the Mohr-Coulomb yield criterion, the rounding parameter ¢ <
1 enables the unified yield function to produce a smooth approximation
of the yield surface [63], thereby avoiding numerical issues from gradi-
ent discontinuities during topology optimization. Interested readers are
referred to the work of Giraldo-Londofio and Paulino [1] for a detailed
discussion of the unified yield function and its parameters.

Although we enforce element-wise stress constraints per material,
we do not include explicit interfacial stress constraints in our for-
mulation. This choice is supported by our experimental validation
using PolyJet-printed specimens (see Section 5), which showed no
interfacial failure due to the highly integrated material transitions
inherent to this printing process [64,65]. Moreover, by enforcing stress
constraints directly on each material within every element, the pro-
posed framework avoids key drawbacks of yield-function interpolation
schemes—namely, the introduction of additional nonlinearities into
an already highly nonlinear problem and the reliance on blending
parameters that, if not carefully tuned, may overestimate yield strength
and lead to premature failure of the resulting designs.

3.3. Solution via the augmented Lagrangian method
Following our previous work [2,3], we solve the optimization prob-

lem (1) using an AL-based approach [32-34]. Using this approach, we
solve (1) as a sequence of unconstrained minimization problems® whose

3 Although we refer to the AL sub-problems as unconstrained, they in fact
contain box constraints on the design variables (z,; € [0, 1]), as shown in (23).

o, and o, denote the yield stress in uniaxial compression and uniaxial tension, respectively.

solutions converge to that of the original optimization problem with
local constraints. Specifically, at each step k of the AL method, we solve
the following minimization sub-problem:

m

N
1 k pu®
L X3 [+ L0 @)

mi J® )
in (z,u) = f(z)+ N -
i=1 =1

2€[0,1]Vxm
k=0,1,2,...

23)

where J® (z,u) is the normalized AL function [2], which consists of

the objective function f(z) from (1) and a penalization term defined in

terms of Lagrange multiplier estimators, /1(;? , a quadratic penalty factor,
u®, and equivalent equality constraints, h,,;(z,u), given by:

—A®
hyy (z.w) = max gz, —2 ),
PG

where g,;(z,u) are the stress constraints defined in (7). After solving
each AL sub-problem, both Af/,ki) and u® are updated as follows:

(24)

A(k+1)

AN + 1y ®h @ ® (25)

P4 = min (@u®, ppa ) . (26)

where @ > 1 controls the quadratic penalty factor update rate and p,,,,
is an upper bound used to prevent ill-conditioning.

The term mN in (23) is used to normalize the penalty term in the AL
function, preventing it from growing unbounded as the number of stress
constraints increases. This normalization improves numerical stability
and has been shown to produce nearly mesh-independent designs, even
for problems involving hundreds of thousands of stress constraints (e.g.,
see [2]). We have successfully applied this normalization strategy to a
broad range of stress-constrained problems with applications spanning
linear and nonlinear elasticity [2,3,40], dynamics [42], and various
yield criteria [1].

To solve the AL sub-problems (23) efficiently using gradient-based
optimization algorithms, we need to compute the sensitivities of the
augmented Lagrangian function J® with respect to the design variables
z. These sensitivities are derived in detail in Appendix A.

Fig. 3 presents a schematic flowchart of our AL-based multi-material
topology optimization framework. The process begins with input data
related to the finite element problem and the optimizer, and with
initialization of /l(f,ki) and u®, for k = 0. With these inputs, we then
use the method of moving asymptotes (MMA) [66] to approximately
solve the AL sub-problem defined in (23). After obtaining an ap-
proximate solution, we update the Lagrange multiplier estimators and
quadratic penalty factors via Egs. (25) and (26). This cycle repeats until
convergence.

Convergence is achieved when the relative change in design vari-
ables satisfies m— Z ‘zfi‘r)l (k)‘ < Tol, and the maximum normalized
equivalent stress, ¢ ﬁ = E, ;00 t, , remains within the prescribed tolerance,
ie., max(&;‘:) < 14+TolS. Here, E,; = mg(Vy;) is defined in Eq. (6), Tol
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Fig. 3. Schematic flowchart of the AL-based topology optimization framework
we employ to solve the multi-material topology optimization problem with
local stress constraints.

and TolS are user-defined tolerances for the design variable change
and the stress constraints, respectively, and zgk) and z,@l denote the
design variable matrices at two successive MMA iterations within AL
sub-problem k.

To account for multiple load cases, the AL formulation must be
extended accordingly. Specifically, each additional load case introduces
mN new stress constraints, resulting in a total of N, = mnN stress
constraints for n load cases. The AL function must be expanded to
include a separate set of Lagrange multiplier estimators, A(;[), and

quadratic penalty terms, %h(;i)z, for each element #, material i, and load
case c. Additionally, because each load case contributes its own set of
equilibrium equations in (1), the sensitivity analysis requires solving a
separate adjoint problem for each load case. Complete details of this
formulation and sensitivity derivations are provided in Appendix A.

4. Numerical examples

This section presents two numerical examples that demonstrate the
capabilities of the proposed framework in designing multi-material
structures with various yield criteria. To ensure the reproducibility
of the results, Table 3 provides the input parameters used to solve
all the problems discussed next. All results were obtained using a
Matlab implementation of the formulation discussed previously. First,
we discuss the design of a three-dimensional corbel and highlight the
benefits of stress-constrained multi-material topology optimization, in
which lighter structures can be obtained by the combination of two
materials with different yield criteria. Next, we discuss the design of
an airless tire composed of three different materials and subjected
to multiple load cases, including normal and shear tractions used to
simulate ground contact forces as the tire rotates. For clarity and ease
of comparison among the optimized designs discussed next, we report
the multi-material volume fraction V' F rather than the weighted mass
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Table 3

Input parameters used to solve all examples.
Parameter Value
Initial Lagrange multiplier estimators, }.(;,) 0
Initial penalty factor, u©® 10
Maximum penalty factor, p,, 10,000
Penalty factor update parameter, & 1.1
SIMP penalization factor, p 3.5
Nonlinear filter exponent, ¢ 3
Ersatz parameter, ¢ 1078
MMA iterations per AL step, MMA_Iter® 5
MMA move limit, move 0.15
Initial threshold projection factor, g 1
Threshold projection factor increment, f;,." 1
Threshold projection factor frequency, ﬁ},eq" 5
Maximum threshold projection factor, f,."” 10
Threshold projection density, 7 0.5
Mixing penalty factor, = 1
Initial guess, sz,? 0.5
Convergence tolerance on design variables, Tol 0.002
Convergence tolerance on stress constraints, TolS 0.003
Maximum number of AL steps, MaxIter 100

2 In practice, the AL function is approximately minimized by perform-
ing a limited number of MMA iterations at each AL step. In this study,
we employ 5 MMA iterations per AL step [1,2].

b Parameter § starts at 1 and increases by fi,. every ., AL steps
and up to a maximum of f_,.

ratio f(z) in (1),
AT,

i=1

AT1
which is independent of the material density parameters, y;, used in the
optimization statement (1).

VF =

B

4.1. Corbel design

This example aims to illustrate the benefits of using a stress-
constrained multi-material topology optimization formulation com-
pared to using a single-material formulation. To demonstrate this, we
optimize a corbel under three different scenarios: (i) considering a
single von Mises candidate material (material 1), (ii) considering a
single Drucker-Prager candidate material (material 2), and (iii) con-
sidering both materials together as candidate materials. The geometry
and boundary conditions for all three design cases are shown in Fig.
4. The corbel is subjected to a load P = 600 kN, applied at its tip and
distributed over a height d = 0.2L. To exploit symmetry, one-half of
the domain is discretized into 314,432 eight-node regular hexahedral
elements, with symmetry boundary conditions imposed along the x-y
plane.

The material properties for each candidate material are summarized
in Table 4. As shown in the table, both materials are assumed to be
linear elastic, each with a Young’s modulus, E = 30 GPa, and a Poisson’s
ratio, v = 0.2. However, they differ in their yield criteria. Material 1
follows the von Mises yield criterion and has a yield stress of oy, =
20 MPa, while material 2 is governed by the Drucker-Prager yield
criterion, and it is characterized by a uniaxial tensile yield stress of 6, =
10 MPa and a uniaxial compressive yield stress of 6, = 35 MPa. Note
that 6, < oy, and o, > oy, indicating that the Drucker-Prager material
is weaker in tension and stronger in compression compared to the von
Mises material. Consequently, in design scenario (iii), the optimizer is
expected to assign the von Mises material to tension-dominated regions
and the Drucker-Prager material to compression-dominated regions of
the domain. This material distribution enables more efficient use of
the available materials, resulting in a lighter structure compared to
design scenarios (i) and (ii), where only a single candidate material
is available.
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Fig. 4. Geometry, boundary conditions, and candidate materials for the corbel problem. The problem is defined using L = 1 m, r = 0.5 m, and P = 600 kN
uniformly distributed across d = 0.2 m. The optimizer is allowed to choose between two candidate materials: a von Mises material shown in white and a

Drucker-Prager material shown in blue.

Table 4

Material properties for the multi-material corbel.
Material property Material 1 Material 2
Weight factor, 7, 1 1
Young’s modulus, E (GPa) 30 30
Poisson’s ratio, v 0.2 0.2
von Mises stress limit, oy, (MPa) 20 -
Drucker-Prager stress limit in tension, o, (MPa) - 10
Drucker—Prager stress limit in compression, ¢, (MPa) - 35

Fig. 5 depicts the results obtained using a filter radius of R = 0.125
m. The left column displays the optimized topologies for the three
design cases, and the middle column showcases the 3D-printed models.
The structures were fabricated using a Bambu Lab Al multi-color
printer and PLA material, solely to demonstrate the manufacturability
of the optimized multi-material topologies. Finally, the right column
illustrates the normalized equivalent stress maps, &,/ = Eo}’, for
each of the resulting designs. In design case 1 (Fig. 5a), where only
material 1 is used, the optimized topology is symmetric about the
horizontal center plane. This symmetry follows from the von Mises
criterion, which assumes identical tensile and compressive strengths,
thus leading to identical material distributions in tension-dominated
and compression-dominated regions of the domain. In design case 2
(Fig. 5b), where only material 2 is considered, the topology becomes
asymmetric due to the tension-compression strength asymmetry in
the Drucker-Prager criterion. The members in the tension-dominated
region are thicker, consistent with the material compressive strength
being 3.5 times larger than its tensile strength (see Table 4).

The combined-material case (Fig. 5¢) integrates features from both
single-material solutions. The tension-dominated region resembles the
von Mises case, while the compression-dominated region resembles
the Drucker-Prager case. This multi-material topology leverages the
strength characteristics of each material: the von Mises material is
assigned to regions governed by tensile stresses, whereas the Drucker—
Prager material is assigned to compression-dominated zones. The out-
come is a 14% reduction in total volume fraction compared with the

single-material designs, as indicated by the optimized values (V' F) in
Fig. 5. These results demonstrate the capability of the multi-material
formulation to achieve lightweight, high-performance structures.

The stress maps and yield surfaces shown on the right column of
Fig. 5 confirm that all three designs satisfy the local stress constraints.
The equivalent stress values remain less than or equal to one across all
elements, indicating that no constraint violations occur. Additionally,
the principal stress points evaluated at the centroid of each element
lie on or within their respective yield surfaces, further validating con-
straint satisfaction.’ In the multi-material design, the equivalent stress
distribution exhibits similar patterns to the von Mises stress distribution
in the single-material case. In particular, both cases show a pronounced
stress concentration at the central joint, the intersection where the
members made of von Mises material meet, indicating that the location
of maximum stress is preserved between the two designs. This behavior
highlights the physical consistency maintained in our approach: each
material responds according to its own failure mechanism, and the
optimizer naturally assigns each material where it can best meet the
local performance demands. This demonstrates the robustness of our

4 Principal stresses are sorted at each evaluation point, i.e., 6, >0, >05. The
apparent clustering of points toward the o, axis results from the principal-stress
ordering convention and constitutes a visualization artifact, not a physical bias
in the stress distribution.
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Fig. 5. Optimized topologies (left), and equivalent stress maps (right) for the multi-material corbel design using: (a) a von Mises material, (b) a Drucker—Prager
material, and (c) a combination of the two materials. The corresponding yield surfaces (shown in white and blue) and principal stresses (shown in red) for
each design case are displayed alongside the stress maps. The 3D-printed corbels (middle), which are 150 mm tall, demonstrate the practical realization of the

optimized designs.

formulation in simultaneously respecting distinct yield criteria while
effectively handling a large number of stress constraints.

The convergence plots for the three design cases are presented in
Fig. C.1 in Appendix C. These plots show the evolution of the maximum
equivalent stress and the volume fraction for the three design cases as
a function of the AL iterations.

4.2. Airless tire design

This example demonstrates the solution of a multi-material problem
involving multiple load cases and pattern repetition, as depicted in Fig.
6. The objective is to design a multi-material airless tire with a radius
of R; =40 mm and a thickness of #; = 8 mm. Due to symmetry, we only

modeled one-half of the domain and discretized it into 77,200 eight-
node regular hexahedral elements, and applied symmetry boundary
conditions along the x-y plane. We enforce pattern repetition through
a modified filter operator, P, which constraints the design space to
density fields exhibiting angular symmetry (see [42]). Specifically, as
shown in Fig. 6b, we impose periodicity on material distribution every
7/2 radians, which corresponds to a pattern repetition with N, =
4 [42].

The wheel is subjected to normal and shear tractions representing
ground contact forces. To capture variations in the load position as the
wheel rotates, three distinct load cases are considered, corresponding to
normal and tangential load combinations applied at angular positions
a = 0°, 45°, and 90°. For each load case, a distributed normal force
of total magnitude F = 700 N is applied over an angular span of
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Table 5

Material properties for the multi-material airless tire.
Material property Material 1 Material 2 Material 3
Weight factor, y, 0.77 1 10
Young’s modulus, E (GPa) 200 200 200
Poisson’s ratio, v 0.3 0.3 0.3
Drucker-Prager tension stress limit, o, (MPa) 120 36 30
Drucker-Prager compression stress limit, o, (MPa) 36 120 30

0, = 15°, following a cosine distribution. The peak of each distributed
load occurs at the angular position, a, as seen in Fig. 6¢c. To account
for frictional effects, a tangential force is also applied using a friction
coefficient y = 1, resulting in distributed tangential loads following the
same cosine distribution as the normal loads.

For this design, we considered three candidate materials, each mod-
eled using the Drucker—Prager yield criterion to capture the asymmetry
between tensile and compressive strengths. This approach enables the
optimizer to assign materials based on whether a region is tension- or
compression-dominated—something not possible with the von Mises
criterion, where only the material with the highest yield strength would
be favored. The mechanical properties for these candidate materials are
listed in Table 5.

To ensure practical manufacturability, we defined two passive re-
gions. The first, assigned to material 3, forms a uniform layer of
thickness #; = 2 mm and located along the outer boundary to provide
a smooth and functional contact surface (see Fig. 6). The second,
assigned to material 1, is another uniform layer of thickness 7, = 2 mm
and located along the inner boundary surrounding the fixed nodes.
Additionally, a high weight factor, y; = 10, is used to penalize the use of
material 3 elsewhere, ensuring it remains confined to the first passive
region.

As discussed before, the multiple load case formulation is detailed in
Appendix A. For the airless tire design problem, we consider three load
cases and three candidate materials, which results in a total number of
stress constraints of N, = 9N, where N is the number of elements in the
mesh. With N = 77,200, this results in N, = 694, 800 stress constraints
that must be handled by the optimizer.

Fig. 7 illustrates the optimized topology and corresponding equiva-
lent stress distributions obtained using a filter radius of R = 2.5 mm.
Specifically, Figs. 7a-b illustrate the optimized material distribution
and the 3D-printed model, respectively,” whereas Fig. 7c shows the
envelope of the maximum normalized equivalent stress across all load
cases.® These results show that all candidate materials remain within
their respective yield limits. Note that the passive regions in Fig. 7c are
presented with the color of their corresponding material as the stress
constraints are not evaluated in these regions. Combined, these results
highlight the effectiveness of our framework in handling multiple load
cases within a multi-material design context. Interested readers are
referred to Fig. C.2 in Appendix C, which illustrates the evolution of
the volume fraction and the maximum normalized equivalent stress for
this problem.

Table 6 summarizes the computational cost for all numerical prob-
lems discussed above. All optimization iterations were performed in
Matlab R2024b on a desktop computer equipped with an Intel Xeon
W-2225 (4.10 GHz) CPU, 64 GB of RAM, and an NVIDIA RTX A4000
GPU. For each problem, the table reports the mesh size, total constraint
evaluations, number of MMA iterations, average time per iteration, and
total runtime.

5 The airless tire design was scaled by a factor of 2.5 to ensure manufactura-
bility, as certain features of the original design were too small to be printed
accurately with the nozzle size of the Bambu Lab Al multi-color printer.

¢ The stress maps are symmetrized to reflect the periodicity of the problem,
with stresses from the first quadrant mirrored across the domain.
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From these results, we can observe that treating the stress con-
straints independently for each material and each element does not
inherently result in a significant increase in optimization time. For
example, the multi-material corbel problem, despite having roughly
four times the number of elements as the airless tire problem, required
only about 15% longer to complete. This suggests that the computa-
tional framework scales adequately with mesh refinement. However,
because the stress and variable-change tolerances differed between
the two problems, the total runtime appears to be influenced more
by optimization parameters than by the number of elements or stress
constraints alone.

5. Experimental validation

In this section, we discuss the experimental validation of our stress-
constrained multi-material topology optimization formulation. The val-
idation process began by fabricating test specimens used to measure
the elastic modulus and yield strength of two candidate materials
under uniaxial tension and uniaxial compression, respectively. The
experimentally measured elastic properties and yield strengths were
used as inputs for our topology optimization framework, which we
used to obtain various optimized beam designs. Finally, we 3D-printed
the optimized designs and evaluated their performance via three-point
bending tests. This integrated process enables us to assess the predictive
capabilities and practical applicability of our framework.

5.1. Multi-material 3D printing

In this work, we used PolyJet 3D printing to fabricate both material
test specimens used for material characterization and the optimized
multi-material beams used for validation of our optimization frame-
work. This 3D printing technology was selected for its ability to fab-
ricate multi-material structures, rather than just multi-color structures,
which is essential for validating our optimization framework. Addition-
ally, we selected this 3D printing technology because it offers superior
resolution and surface quality [67], which we deemed essential for
the experimental validation. In this work, we employed the Stratasys
J5 MediJet 3D printer using VeroCyan and Digital ABS, which offer
distinct mechanical properties suited for tension- and compression-
dominated regions, respectively, as discussed later.

The PolyJet 3D printing process involves a layer-by-layer depo-
sition wherein various photopolymer materials, sprayed using inkjet
printing heads, are immediately cured with UV light to solidify and
bond each layer [68]. Due to the droplet-level mixing, PolyJet can
produce smooth, gradient-like material interfaces, reducing interfacial
stress concentrations and promoting a strong bond between materi-
als [64,65]. All test specimens and optimized beams were printed with
a glossy finish and oriented on the print bed as shown in Fig. 8. After
printing, all specimens were submerged in water for 24 h to dissolve
the water-soluble support material (WSS150), polished with Grade No.
00 sandpaper to remove surface imperfections, and conditioned in a
light-blocking chamber with air circulation for 48 h to remove residual
moisture and ensure consistent material properties before testing.

5.2. Material characterization

To quantify the mechanical properties of the candidate materials
(i.e., VeroCyan and Digital ABS), we conducted standardized uniaxial
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Fig. 6. Problem definition for the multi-material airless tire design. (a) Multi-material airless tire domain and boundary conditions; (b) schematic illustrating the
pattern repetition of densities in the design; and (c) the loading cases considered in the design, where the multi-material airless tire is subjected to normal and
shear tractions representing the contact forces exerted by the ground on a wheel while neglecting the dynamic effects. The domain is defined using R, = 40 mm,
R, =6 mm, t; =2 mm, ¢, =2 mm, and #; = 8 mm. The normal traction is given by f(6) = C cos (%(0 — a)), where C is a constant determined such that the total
magnitude of the normal force equals F =700 N, 6, = 15°, and « € {0, 7/4,7/2}. The shear traction is given by T = u f(6), where u = 1.0.

B Material 1 B Material 2 I Material 3

o ) |
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Fig. 7. Multi-material airless tire design with three different candidate materials. (a) Optimized multi-material distribution, (b) 3D-printed airless tire, and (c)

equivalent stress map. The resulting design has a volume fraction of 0.473 and was obtained considering the Drucker—Prager yield criterion for the three candidate
materials.

tension and compression tests in accordance with ASTM D695 and Type IV dogbone specimens, and for the compression tests, we used
ASTM D638, respectively [69,70]. For the tensile tests, we adopted standard rectangular prisms (see Fig. 8). Each material was tested

11
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Table 6

Computational cost for the numerical benchmark problems in Section 4.
Design problem Mesh Number of Iterations Time/iter. Total time

size constraints (s) (h)

von Mises corbel 314,432 314,432 224 27.3 1.7
Drucker-Prager corbel 314,432 314,432 393 33.0 3.6
Multi-material corbel 314,432 628,864 182 41.5 2.1
Airless tire 77,200 694,800 236 27.7 1.8

Multi-material

Stratasys J5 Medilet beams

printing bed

Compression coupons

Build direction

Dogbone specimens

Fig. 8. Printing layout on the Stratasys J5 MediJet printing bed, illustrating the orientation of the specimens used for material characterization, along with a
multi-material beam designed based on the measured mechanical properties of the constituent materials.

Table 7
Material properties for the multi-material beam problem.

Material property VeroCyan Digital ABS
Weight factor, 7, 1.15 1

Young’s modulus, E (MPa) 2,588 2,162
Poisson’s ratio, v 0.3 0.3
Uniaxial tension stress limit, o, (MPa) 37.3 39.6
Uniaxial compression stress limit, . (MPa) 74.1 52.9
Equibiaxial compression stress limit, o, (MPa) 74.1% 52.9¢

2 The equibiaxial compression stress limit used in the Willam-Warnke failure criterion was assumed to be equal to the uniaxial compression
stress limit due to the lack of experimental testing equipment for biaxial compression tests.

using four specimens per loading mode, with tensile tests conducted
at 5 mm/min and compression tests at 1 mm/min using an MTS 370
load frame under displacement-controlled conditions.

Fig. 9 depicts the resulting stress—strain curves for both materials
and Table 7 summarizes the corresponding Young’s modulus and yield
stresses obtained from these curves and employed later in the numerical
models.” These results show that the Digital ABS has a higher yield
stress in tension, whereas the VeroCyan exhibits a greater yield stress in
compression. Based on these findings, we anticipate that the optimizer
will place Digital ABS in the tension-dominated regions of the beam and
VeroCyan in the compression-dominated regions to maximize structural
performance while minimizing material usage.

5.3. Multi-material beam designs

Using the measured material properties (i.e., the Young’s moduli
and yield stresses discussed in the previous section), we optimized the
topology of a simply supported beam. The beam geometry, loading

7 The yield stresses in both tension and compression were determined using
the 0.2% offset method. According to this method, the yield stress is obtained
from the intersection between the stress—strain curve and a line parallel to its
elastic region but offset by 0.2% strain on the strain axis. We employed this
method because our materials do not exhibit a distinct yield point.

12

conditions, supports, and passive regions are illustrated in Fig. 10.
The simply supported beam has length L = 150 mm, height L/4, and
width L/6. For this problem we considered two load cases. The first
consists of a vertical load, P = 3,000 N, applied over a region of width
d = 6 mm, and the second consists of a lateral load, aP, with a = 0.15,
distributed over a region of width d = 6 mm and height ~ = 6 mm.
The lateral load was introduced to mitigate the risk of lateral buckling
instabilities observed in preliminary experimental tests conducted on
beams designed solely for the vertical load case.® Besides considering
two load cases, we also considered passive regions of width » = 6 mm
and thickness ¢ 1.5 mm at the support locations (see Fig. 10) to
prevent material removal in these critical areas and to avoid issues
related to stress singularities.

To obtain the numerical results discussed next, we discretized half of
the beam domain into 98,784 regular hexahedral elements and imposed
symmetry boundary conditions along the y-z plane at the midspan
location. Additionally, we used a filter radius, R = 6 mm, a convergence
tolerance for the design variables, Tol = 0.0015, and a convergence
tolerance on the stress constraints, TolS = 0.008. Finally, we employed
a continuation scheme on the DMO mixing penalty factor, z, starting

8 We note that buckling constraints are not included in the present
formulation, and incorporating them explicitly is part of our future work.
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Fig. 9. Stress—strain curves in tension and compression for the two candidate materials: VeroCyan (blue) and Digital ABS (gray).

‘ [ |Design domain [l Passive region [l Supports ‘

Fig. 10. Geometry and loading conditions for the beam problem. The geome-
try is defined using L = 150 mm, b =6 mm, d = 6 mm, A = 1.5 mm, 7 = 1.5 mm,
load P =3,000 N, and a lateral load applied as a fraction of the vertical load
where a = 0.15.

at 7 = 0 and increasing incrementally by 0.5 every two AL iterations,
until reaching a value of r = 1.

To incorporate the tension-compression strength asymmetry into
our multi-material formulation, we must select an appropriate yield cri-
terion to characterize the failure behavior of each of the two candidate
materials. Given the limited availability of experimental data to know
the exact shape of the yield surfaces for our materials, we considered
three different yield criteria, namely Drucker—Prager, Mohr-Coulomb,
and Willam-Warnke.’

9 All of these criteria account for different yield stresses in tension and
compression but differ in the shape of their yield surfaces and the parameters
required to define them. For instance, the Drucker-Prager and Mohr-Coulomb
criteria require only uniaxial tensile and compressive yield stresses, whereas
the Willam-Warnke criterion requires the yield stress in equibiaxial compres-
sion in addition to the two aforementioned yield stresses. Due to the lack of
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Fig. 11 presents the results obtained for each of the yield criteria
considered in this study. The left column of Fig. 11 displays the result-
ing multi-material topologies for each of the three designs. As shown,
each yield criterion produced a truss-like structure and, as expected, the
optimizer assigned VeroCyan to the compression-dominated regions of
the beams and Digital ABS to the tension-dominated regions. The mid-
dle column of Fig. 11 shows the resulting 3D-printed topologies. These
prints reflect the final geometries obtained after postprocessing,'’ and
demonstrate the feasibility of manufacturing complex multi-material
structures with sharp material transitions. Finally, the right column of
Fig. 11 displays the envelope of equivalent stress maps for each design,
showing that all stress constraints were satisfied locally. Because half of
the domain was discretized using 98,784 regular hexahedral elements,
and we considered two candidate materials and two load cases, our
AL-based formulation effectively enforced 395,136 stress constraints.

Fig. 11 illustrates how the choice of the yield criterion influences the
optimized volume fraction and the material distribution of the multi-
material designs. The Drucker-Prager criterion produced a total volume
fraction of 0.192, while the Willam-Warnke design resulted in the
lowest volume fraction of 0.186, and the Mohr—Coulomb design yielded
the highest total volume fraction of 0.210. Despite these differences, a
consistent trend emerges. Specifically, across all three cases, VeroCyan
consistently comprised approximately 56% of the total solid material,
with the remainder assigned to Digital ABS. This preference reflects the
tendency of the optimizer to exploit the superior compressive capacity
of VeroCyan, whose uniaxial compressive yield strength is about 40%
higher than that of Digital ABS, while its uniaxial tensile strength
is only 6% lower than that of Digital ABS. Consequently, across all
three criteria the designs show a modest but consistent bias toward
VeroCyan. The evolution of material fractions and maximum equivalent

additional experimental data, we conservatively assume that the yield stress
in equibiaxial compression is equal to the yield stress in uniaxial compression.

10 We postprocessed the resulting material density fields to remove neck-
ing artifacts that might compromise the structural performance of the
multi-material beams, as detailed in Appendix B.
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Fig. 11. Multi-material beam designs for different yield criteria: (a) Drucker-Prager, (b) Willam-Warnke, and (¢) Mohr-Coulomb. For each criterion, the figure
shows the optimized topology (left), the corresponding 3D-printed beam (middle), and the normalized equivalent stress map (right).

stress during the optimization iterations is provided in Fig. C.3 from
Appendix C, corroborating these trends.

5.4. Experimental testing and discussion

We evaluated the mechanical performance of the optimized multi-
material beams using three-point bending tests. The setup, illustrated
in Fig. 12a, is summarized below:

1. We prepared two printed replicas of each optimized beam design
shown in Fig. 11 for testing.

2. We employed a custom three-point bending fixture to replicate
the supports and loading conditions of the numerical model.

3. We filed the indenter tip down to a width of 6 mm, correspond-
ing to the dimension d in Fig. 10.

4. We applied a controlled displacement at the mid-span at a
constant rate of 1 mm/min.

5. We continuously recorded the reaction force until failure.

6. We used a high-speed camera to capture snapshots of each test
at the instant of failure.

Fig. 12b shows the load-displacement curves obtained from the
three-point bending tests. The beam designed using the Drucker-Prager
yield criterion failed at a maximum load of 2051 N, which is 32%
lower than the design load of 3000 N. The beam designed with the
Willam-Warnke criterion reached a peak load of 2728 N, falling short
of the design load by 9%. Similarly, the Mohr—Coulomb design failed at
2636 N, underestimating the design load by 12%. All beams failed with
displacements below 6 mm. This behavior is consistent with our earlier
findings that stress-constrained solutions yield compliance values of the
same order of magnitude as minimum-compliance formulations [42],
since stress constraints indirectly limit the overall deflection of the
optimized structure. Interestingly, despite the constituent materials
exhibiting ductile behavior in uniaxial tests (see Fig. 9), the Drucker—
Prager and Willam-Warnke beams exhibited brittle failure, whereas the
Mohr-Coulomb design showed signs of minor plastic deformation prior
to failure, suggesting a slightly more ductile response compared to the
other two designs.
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Fig. 12c shows high-speed camera snapshots captured at the instant
of failure for each beam design. In all cases, failure initiated at one of
the top joints, rather than in the regions predicted to exhibit the highest
equivalent stresses (see the right column of Fig. 11). This discrepancy
in failure location, coupled with the premature failure observed during
testing, may be attributed to several contributing factors.

First, the stress state at the failure locations differs significantly from
the uniaxial stress conditions used during material characterization. As
a result, the selected yield criteria may be inadequate for predicting
failure of the candidate materials under complex multiaxial stress
states. Additional testing, including biaxial tension and compression
tests, could provide more information to identify the most accurate
shape of the yield surfaces needed to model the failure behavior of the
candidate materials. Second, all yield criteria used in this study assume
isotropic material behavior and do not account for the anisotropy
induced by the PolyJet printing process. Prior work has shown that the
mechanical properties of PolyJet-printed components are sensitive to
print orientation [71-73]. As shown in Fig. 8, the tensile specimens
were printed with the layer lines aligned with the loading direction,
while the compression specimens had layers oriented perpendicular
to the load. These print orientations represent idealized conditions
leading to the highest possible uniaxial yield strengths, which can
result in the overestimation of the actual strength in more complex,
multiaxial stress states experienced by the optimized beams. Finally,
potential manufacturing defects, such as internal voids, may also have
contributed to the observed failure modes by locally reducing material
strength [74].

Despite the fact that the beams did not reach their intended design
load, the experimental results demonstrate that our model captures
the structural capacity of the multi-material beams with reasonable
accuracy. It should be emphasized that this validation is limited to
components fabricated at the tested laboratory scale using PolyJet-
printed photopolymers, and the results may not directly extend to
larger-scale structural applications or to parts manufactured by other
additive manufacturing technologies. Possible extensions could incor-
porate anisotropic yield criteria such as the Tsai-Wu [75] and the
Liu-Huang-Stout [76] criteria, which may enable the framework to
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Fig. 12. Experimental validation of the multi-material beam topologies. (a) Test setup, (b) load—displacement curves comparing the performance under different
yield criteria, and (c) high-speed snapshots capturing the failure mechanisms at maximum load for specimens corresponding to each yield criterion.

Table 8
Computational cost for the experimental validation problems in Section 5.
Design problem Mesh size Number of constraints Iterations Time/iter. Total time
) (h)
Drucker-Prager beam 98,784 395,136 228 27.3 1.7
Willam-Warnke beam 98,784 395,136 273 26.4 2.0
Mohr-Coulomb beam 98,784 395,136 254 29.7 2.1

more accurately model material behavior across different manufactur-
ing processes and length scales, including structural-scale components.

For completeness, Table 8 summarizes the computational cost for
the experimental validation problems presented in this section. The re-
ported runtimes were obtained using the same computing environment
described in Section 4. As in the numerical benchmarks, the table lists
the mesh size, total constraint evaluations, number of MMA iterations,
average time per iteration, and total runtime.

5.5. Limitations and future work

While this work advances the field of stress-constrained multi-
material topology optimization, our validation was limited to Poly-
Jet printing, which produces smooth, gradient-like interfaces through
droplet-level material mixing. This process minimizes interfacial
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stresses and promotes strong bonding between materials [64,65], jus-
tifying the omission of interfacial stress constraints in our work. How-
ever, weaker interfaces are often encountered in other additive manu-
facturing processes, such as fused deposition modeling (FDM), where
imperfect interlayer adhesion frequently governs failure. In such cases,
explicitly modeling interfacial failure becomes essential to ensure re-
liable model predictions. Another important direction is the incorpo-
ration of material mixing models, which would allow the framework
to represent graded transitions between materials. Such gradients,
inspired by biological systems, can reduce stress concentrations and
improve load transfer across interfaces, but they require constitutive
descriptions of intermediate mixtures that go beyond the discrete
material phases considered here. Extending the framework with both
interface-specific stress constraints and material mixing models could



J.P. Giraldo-Isaza and O. Giraldo-Londofio

therefore broaden its applicability and capture a wider range of bond-
ing behaviors across additive manufacturing processes and material
systems.

Beyond interfacial considerations, the mechanical response of Poly-
Jet parts is also known to depend strongly on build orientation. Prior
studies have reported orientation-dependent anisotropy in PolyJet-
printed parts [71-73], and additional modeling uncertainty may arise
from unquantified manufacturing defects such as internal voids. Al-
though a rigorous experimental characterization of yield behavior,
including biaxial tension-compression testing of base materials and
systematic quantification of print-orientation effects, is outside the
scope of the present study, such efforts would substantially improve the
predictive capabilities of the computational framework and help close
the gap between numerical predictions and the performance of physical
prototypes. We are currently working in this direction by extending the
formulation to account for anisotropic yield criteria (e.g., Tsai-Wu [75]
and Liu-Huang-Stout [76]), which will allow the framework to better
capture orientation-dependent effects and broaden its applicability to a
wider class of materials and processes. To enable practical application
to the design of large-scale structures, future research could also ex-
plore additional manufacturing technologies and explicitly incorporate
manufacturing uncertainties.

Besides process-related considerations, geometric nonlinearities and
structural-scale effects also present important directions for future ex-
tension. In the beam example, a lateral load was introduced to mitigate
the risk of buckling observed in preliminary tests, but buckling itself
was not considered in the formulation. Incorporating such constraints
directly will be an important next step to ensure that optimized struc-
tures reach their yield limit before experiencing geometric instabilities.
Another natural extension of the framework is the inclusion of displace-
ment constraints, which would allow serviceability limits to be enforced
explicitly. Such constraints can restrict excessive nodal deflections,
thereby ensuring that the small-deformation assumptions adopted in
the present study remain valid. By combining stress, stability, and
displacement considerations, the formulation could potentially address
both strength and serviceability requirements in a unified optimization
setting. Overall, these developments will extend the applicability of
the framework to more realistic structural-scale problems and reinforce
its potential as a robust, high-fidelity tool for the design of multi-
material structures under complex mechanical constraints, with strong
applications in additive manufacturing, lightweight design, and the
optimization of functional, mechanically resilient systems.

6. Concluding remarks

This work introduced a unified framework for stress-constrained
topology optimization of multi-material structures, addressing the crit-
ical need to incorporate distinct failure criteria for each candidate
material. Building upon the unified yield criterion from our previous
work [1], the framework introduced in this study enables the design
of structures composed of a wide range of materials exhibiting ei-
ther pressure-dependent or pressure-independent failure behavior. In
contrast to existing approaches, which approximate yielding behav-
ior via nonlinear interpolation between multiple yield criteria, our
method enforces one stress constraint per element and per candidate
material. This direct enforcement eliminates several key drawbacks of
interpolation-based schemes: (i) additional nonlinearities introduced
by the interpolation functions, (ii) the need for parameter tuning to
control the blending behavior, (iii) inaccurate representation of ma-
terial yielding during early optimization stages when material mixing
is common, and (iv) the risk of overestimating material strength that
happens with some interpolation functions. In addition to these advan-
tages, our approach remains computationally efficient. Although we
impose one constraint per element and candidate material, we solve
the resulting highly constrained optimization problem using the AL
method, which requires computing only a single adjoint vector per
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load case at each optimization step. From the mathematical structure
of the optimization problem, the computational cost of our approach
is expected to remain comparable to that of methods based on yield
function interpolation. This is because the dominant operations, which
include solving the displacement problem, evaluating stresses in all
elements and candidate materials, and computing one adjoint problem
per load case, are identical in both approaches. Consequently, the
overall number of floating-point operations should be approximately
the same in either approach.

We demonstrated the capabilities of our approach through a series
of three-dimensional numerical examples involving different geome-
tries, loading scenarios, and yield criteria. These examples included
design problems such as a multi-material corbel and an airless tire,
which showed the scalability of our approach. In the corbel exam-
ple, the optimizer effectively leveraged the distinct strengths of each
candidate material, producing a multi-material design with signifi-
cantly lower volume fraction than single-material designs. This result
highlights the potential of the framework to reduce mass without
compromising structural integrity by strategically allocating materi-
als based on local stress demands. In the airless tire problem, our
framework successfully handled nearly 700,000 local stress constraints
resulting from 77,200 finite elements, three candidate materials, and
three load cases, with one constraint imposed per element and material
for each load case. Despite the high constraint count, the method
achieved stable convergence and produced physically interpretable,
manufacturable designs. These results confirm that the method not
only scales to large-scale, realistic design problems but also generates
efficient structures that satisfy stress constraints locally.

In addition to the numerical examples, we performed experimental
testing on optimized multi-material beams fabricated via PolyJet 3D
printing to assess the capabilities of the proposed approach to de-
sign structures that perform as intended. The designs were based on
the Drucker-Prager, Willam-Warnke, and Mohr-Coulomb yield criteria
and were evaluated under three-point bending. The beam designed
with the Drucker-Prager criterion failed at a maximum load 30%
below the intended design load, while the Willam-Warnke and Mohr-
Coulomb designs failed, respectively, at a maximum load 12% and
9% below the design load. Although all beams failed before reaching
their design load, the experimental results indicate that our model
captures the structural response of the multi-material designs with
reasonable accuracy. The observed discrepancies between the numeri-
cal predictions and the experimental results suggest limitations in the
use of isotropic yield criteria and highlight the need to account for
print-induced anisotropy.
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Appendix A. Sensitivity analysis

Based on our previous work [1,2,42,77], we use the AL method
to find the solution of the constrained optimization problem (1) as a
sequence of unconstrained optimization sub-problems, each aiming to
minimize the AL function. Specifically, at each step k of the AL method
we solve the following minimization problem:

min J® (z,u) =

z€[0,1]Nxm

1
[ @+ —=P@w, k=0,12,.. @7

where f(z) is the objective function and P(z,u) is a penalization term,
which is given by:

m N
P(z,u):ZZ

i=1 =1

[/ﬁ")hf, (z,u) + —h (zw)|. (28)

We approximately solve each optimization sub-problem using a
gradient-based algorithm. Accordingly, we evaluate the sensitivity of
(27) using the chain rule, as follows:

oJ® _ @,)J(k) ﬂa‘](k) M()J(M (29)
oz oz 0E o0z oV 0z oW’
N N
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N
{Wers o Wemb ooy

Based on the functional form of the AL function in (27), we rewrite
(29) as follows:

oJ _of OE,  of IV, of IW,

3z, T 9z, T v, oz, tow oz, 0
L(E."_Ef E."_Veri.a_“’f),
mN \JE; 0z,; 0V, 0z,; W, 0z,

To simplify the notation, we have dropped the superscript k in (30) and
in the subsequent equations of this section.

Given the structure of the objective function in the optimization
problem (1), we obtain the following:

i} ViA, 7}
_f = m’—fT f =0. 31D
ani Zk:l }’kA 1 ani
Additionally, from (24), and (7) we obtain
oP oP
—_— = — =0,
oVy; oWy, (32)
and
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To avoid the expensive computation of du/dE,;, we use the adjoint
method to obtain dP/JE,;. That is, we add the sensitivity of the
equilibrium equation, Ku = F, to (33). By doing so, we obtain

o oh; (z,u) 0hj (z,u) ,Hy
6E 2 Aj + phjy (2, w)] [ J + Ja SE ]
i k=1 j=1 u i (34)
T Ju aK
K2
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We collect all the terms in (34) involving du/0E,; which results in:
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aEf, ,Z; ; it sh (2, w) dE,,
m N
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and select the adjoint vector & such that these terms vanish, leading to
the following expression:

z Z [4jx + shjy (z,w)]
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where ¢ solves the adjoint problem:

Z z [4jc + phjy (2, 0)] ———

Using Eq. (4), the sensitivity of the stiffness matrix with respect to E,;,
which is required to evaluate dP/JE,; in (36), is computed as

oh
]k (z, u) 37)

N m
oK oWy
o k.., (38)
0E,, Z‘ug 0E, ‘X
where
m
II (1-<E) ifk=i
oW, =
aEfk — ) JFkJ#i m (39)
By [ (1-cEy) ifk#i
j=1
j#’k,j#i

and k;, is the element stiffness matrix of element # when filled entirely
with material k.

The remaining terms necessary for computing 0P/JE,; are
0hj [0E,; and dhj, /ou, and these are derived below for completeness.
For instance, oh;, /dE,; is obtained explicitly using Eq. (24) and the
definition of g,;(z,u) given in Eq. (7), as shown below:

A
Ohy @ w) | Ay, (Ajz.k + 1) 876, when g (zw) < -2 “0)
0E,; 0 otherwise,

where §;, is the Kronecker delta operator. Moreover, dh;,/ou is also
obtained from Eq. (24) and using the chain rule as follows:

0hjk (z,u)

Ju
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0 otherwise.

The sensitivities of the stress invariants I, J,, and J;, with respect
to the vector of Cauchy stresses are given by
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for 2D problems.

Eq. (41) is fully defined after computing the sensitivity of the
Cauchy stresses vector with respect to the displacement vector, i.e.,
00 ;. /du. Using the definition of ¢, from Eq. (14) and the chain rule,
we obtain:

00
ou

Finally, the sensitivity of the unified yield function with respect to
the stress invariants is obtained from Egs. (8)—(9) and are given by
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Fig. B.1. Postprocessing routine sequence. First, separate isosurfaces are extracted for each material from the projected density fields, which can produce geometric
intersections and necking at the interface (Isosurface 1 and Isosurface 2). A composite density field is then constructed and its isosurface is used to generate
a tetrahedral mesh (TetMesh) representing the overall geometry. This mesh is partitioned into material-specific submeshes based on the position of element
centroids relative to each material isosurface, producing clean, non-overlapping boundaries. The final material isosurfaces eliminate necking artifacts and are
ready for fabrication. The bottom panel shows a beam from Section 5, where the original interface (red inset) exhibits necking, while the postprocessed interface

(green inset) is smooth and continuous.

where the partial derivatives of 0a(8)/d6, d6/dJ, and 06/dJ; can be
obtained explicitly from Egs. (15)-(19).

A.1. Sensitivity analysis for multiple load cases

The AL sub-problem (27) can be extended to multiple load cases as
follows:

J(z,u) = f(z)+ LP(z,u), (46)
mnN

where n denotes the number of load cases, and the penalty term is given
by

n

-3

c=1

h(C)
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(c) (c)
[R5 (2uc) +

(z.u,)]-
The previously derived sensitivities from (31) and (32) remain valid
for the multiple-load case problem. However, as in the single-load case,
we follow an adjoint sensitivity analysis procedure and reformulate the
corresponding sensitivity with respect to E,; as follows:
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where u, is the displacement vector associated with load case ¢, ob-

tained from the equilibrium equation Ku, = F.. As for the single-load
case, we group all terms involving ou,/0E,; which results in:
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To avoid the expensive computation of du./dE,;, we choose the
corresponding adjoint vectors &, such that these terms vanish, leading
to the following expression:

0h(.i) (z,u,)
2 22 44 4 (2.u,) | o + 6T 2, |, (50)
aEfl P = 0E,, aE
where &, solves the adjoint problem:
m N on'© (z.u,)
=X [ ) (2w | S (1)
4 Ju
k=1 j=1 ¢

The remaining partial derivatives in (50) and (51) are computed in the
same manner as in the single-load case.

Appendix B. Postprocessing of multi-material interfaces

In the context of density-based topology optimization, the optimized
material distribution is typically interpreted by extracting an isosurface
from the optimized density field using a cutoff density (e.g., 0.5).
Although this approach works well for single-material problems, it
presents issues in multi-material topology optimization. Specifically,
when separate isosurfaces are extracted for each candidate material,
geometric intersections between neighboring isosurfaces can create
narrow necking regions at material interfaces. These necking artifacts
result in localized stress concentrations at material interfaces that may
compromise the structural performance of the fabricated multi-material
designs.

To address this issue, we implemented a postprocessing routine
inspired by the strategy suggested by Sanders et al. [78] and illustrated
on Fig. B.1a. This postprocessing scheme eliminates necking artifacts by
first constructing a composite density field defined as:

m
V, = min (Z Vois 1) .

i=1

(52)

An isosurface is extracted from the composite density field and used
to generate a tetrahedral mesh (TetMesh) using the iso2mesh tool-
box [79], which relies on TetGen [80] to represent the overall structure.



J.P. Giraldo-Isaza and O. Giraldo-Londofio Composite Structures 375 (2026) 119754

‘ [1Material 1 [ Material 2 ‘

a) 2
1.75
wn
3
s 15 &
° £
(]
= 125 <
) >
IS S
> &
2 L
s
0.75
O 1 1 1 1 1 1 1 1 05
0 5 10 15 20 25 30 356 40 45
AL sub-problem, k
b)
(/]
(/2]
S .
2 k7]
‘8 5
b g
IS S
=] (o]
° (0]
= 3
=
0 1 1 1 1 1 1 1 Og
0 10 20 30 40 50 60 70 80
AL sub-problem, k
C) 1.2 T ‘iw T T T T 2
| - .
T |
1 | U N 0 05 11175
| ;‘\ wn
‘ 3
5 08 15 £
3] £
© <@
- 0.6 1.26 S
= El
g 0.4 1 %
0.2 0.75 =
0 L L L 0.5
5 10 15 20 25 30 35

AL sub-problem, k

Fig. C.1. Convergence plots for the corbel design problem: (a) single-material case using the von Mises yield criterion, (b) single-material case using the Drucker—
Prager yield criterion, and (c) multi-material case. The results are obtained after discretizing one-half of the domain using 314,432 regular hexahedral elements.
For each case, the change of volume fraction along the AL iterations, k, is presented in black, while the evolution of the maximum normalized equivalent stress
is shown in red. The shaded areas under the volume fraction curve illustrate the contribution of each material to the total volume fraction.
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Fig. C.2. Convergence plots for the multi-material airless tire problem obtained after discretizing one-half of the domain using 77,200 regular hexahedral elements.
The change of volume fraction along the AL iterations, k, is presented in black, while the evolution of the maximum normalized equivalent stress is shown in
red. The shaded areas under the volume fraction curve illustrate the contribution of each material to the total volume fraction.

Table 9
Material properties for the 2D multi-material corbel problem.

Material property

Orange material

Purple material

Weight factor, 7,

1

1

Young’s modulus, E (GPa) 60 100

Poisson’s ratio, v 0.3 0.3

von Mises stress limit, oy, (MPa) 90 100
Individual isosurfaces are then generated for each candidate material In all three cases, the design domain initially contains 50% of the
and used to determine the material phase associated with each tetra- material density at each element (i.e., z,; = 05, ¢ = 1,...,N and
hedral element. This is accomplished by checking whether the centroid i = 1,...,m). For the two-material design shown in Fig. C.1c, this

of an element lies within a given material isosurface. Once identified,
the element is tagged with the corresponding material index. In the rare
event that an element centroid lies within multiple material isosurfaces,
the element is assigned to the first isosurface it intersects, ensuring a
unique material assignment for every element.

Once all tetrahedral elements have been assigned a material index,
the TetMesh is partitioned into m separate meshes—one per material.
The outer surface of each mesh is then identified, resulting in a set of
m non-overlapping isosurfaces that are free of necking artifacts. These
cleaned isosurfaces are exported as a 3MF file, a format suitable for
multi-material additive manufacturing.

This postprocessing procedure effectively eliminates interface neck-
ing artifacts caused by intersecting isosurfaces and mitigates the as-
sociated stress concentrations. Fig. B.1b illustrates the improvement
achieved using our postprocessing routine. The red inset, located to
the right of the beam topology, highlights a necked interface obtained
using the conventional multi-isosurface approach, while the green inset
shows the same region after applying our postprocessing routine.

Appendix C. Convergence plots for selected problems

This section summarizes the convergence behavior of all problems
discussed in this manuscript. The convergence plots track how the
volume fraction, V' F, and the maximum equivalent stress, max(&;‘f) =
max(Eg;0;]), evolve at the end of each AL subproblem, k. Fig. C.1
shows the convergence curves for the three corbel designs reported
in Section 4.1. Figs. C.1a and C.1b show the results for the single-
material designs based on the von Mises and Drucker-Prager yield
criteria, respectively, while Fig. C.1c shows the convergence behavior
of the two-material design.
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initialization produces a total volume fraction of 100% due to the
overlap of the two candidate materials. During the initial iterations,
the volume fraction increases slightly before gradually decreasing as
the AL iterations proceed. The designs eventually converge to volume
fractions of 16.3%, 17.4%, and 14.0% for the single-material von
Mises, the single-material Drucker-Prager, and the two-material cases,
respectively. A consistent trend also appears in the evolution of the
maximum equivalent stress. During the initial iterations, the maximum
equivalent stress decreases as the volume fraction increases, and then
reaches a peak once the volume fraction starts to decrease. After this
peak, the maximum equivalent stress oscillates with a progressively
smaller amplitude until it stabilizes at the limiting value of 1.

Fig. C.2 presents the convergence plot for the multi-material airless
tire design discussed in Section 4.2. Unlike the results discussed before,
here the maximum equivalent stress remains below the prescribed limit
throughout the optimization iterations. Convergence is achieved as the
volume fraction decreases and the maximum equivalent stress reaches
the maximum allowable value of 1.

Fig. C.3 presents the convergence plot for the multi-material beam
discussed in Section 5, which considered three different yield criteria,
namely Drucker-Prager, Willam-Warnke, and Mohr—Coulomb. In this
problem, the volume fraction consistently decreases throughout the
AL iterations for all three design cases. Meanwhile, the maximum
equivalent stress exhibits a rapid increase during the initial itera-
tions, followed by oscillations above the allowable limit of 1 until
convergence is achieved.

Appendix D. Sensitivity to algorithmic parameters

This appendix investigates the sensitivity of the proposed frame-
work to key algorithmic parameters that influence the quality of the
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Fig. C.3. Convergence plots for the multi-material beam problem: (a) results using the Drucker-Prager yield criterion, (b) results using the Willam-Warnke
yield criterion, and (c) results using the Mohr—Coulomb yield criterion. The results are obtained after discretizing one-half of the domain using 98,784 regular
hexahedral elements. For each case, the change of volume fraction along the AL iterations, k, is presented in black, while the evolution of the maximum equivalent
stress is shown in red. The shaded areas under the volume fraction curve illustrate the contribution of each material to the total volume fraction.
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Fig. D.1. Effect of the mixing penalty term on the final topology for the Drucker—Prager beam. (a) Continuation scheme with r initialized at 0 and increased
by 0.5 every two AL iterations until reaching = = 1. (b) Continuation scheme with ¢ initialized at 0 and increased by 0.5 every five AL iterations until reaching
7 = 1. (c) No continuation scheme, with 7 = 1 applied from the beginning of the optimization.

optimized designs. While the results discussed previously focused on
demonstrating the overall capabilities of our AL-based framework, here
we provide a more detailed examination of how parameter choices
affect the optimization results. We first study the effects of continuation
of the mixing penalty term 7 used in the DMO interpolation function,
and then examine the influence of the cutoff density 7 and projection
sharpness f in the threshold projection of the design variables.

D.1. Influence of the continuation on the mixing penalty term

Fig. D.1 examines how different continuation strategies for the
mixing penalty term, 7, affect the optimized beam designs discussed
in Section 5.3. For illustration purposes, we focus on the beam de-
signed using the Drucker-Prager yield criterion. Here, we compare
three strategies: (a) the baseline scheme from Section 5.3, where 7
starts at 0 and increases by 0.5 every two AL iterations until reaching
a value of 1; (b) a slower continuation using the same 0.5 increments,
but this time applied every five AL iterations; and (c) no continuation,
where 7 = 1 is enforced from the start.

A comparison between Figs. D.1a-b shows that the rate at which
increases affects the final design. Nevertheless, the overall topological
features remain qualitatively similar between these two designs, with
the resulting volume fractions differing by only 2%. In contrast, en-
forcing = = 1 from the start (Fig. D.1c) produces a noticeably different
material distribution, wherein the tension-dominated region along the
bottom chord contains a combination of VeroCyan and Digital ABS),
unlike the other two designs where this region is composed solely
of Digital ABS. Despite producing a different topology, the optimized
volume fraction for case (c) is almost identical to that for case (b).
These differences in optimized designs are expected in highly nonlin-
ear and non-convex problems such as the stress-constrained topology
optimization problem introduced here, where even small changes in
input parameters (e.g., those related to the DMO interpolation function)
can steer the optimizer toward a different local minimum. Based on
these observations, we adopted the parameter set from Fig. D.la for
the results presented in Section 5.3, as it produced the most consistent
designs across the yield criteria studied.

D.2. Influence of the threshold projection parameters

Here we investigate the influence of the cutoff density 7 and the
projection sharpness § in Eq. (2) on the optimized topologies of a 2D
corbel problem previously studied by Kundu et al. [53]. The problem
considers two candidate materials with properties summarized in Table
9. Consistently with [53], the results we discuss next are obtained for a
design domain discretized into 40,000 regular quadrilateral elements,
and using a filter radius of R =0.19 m.

Fig. D.2 illustrates the topologies obtained after solving the first 10
AL subproblems. We selected to display the results at this stage because
variations in 7 and f§ have the most pronounced effect on topology
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during the early stages of the optimization process. In Fig. D.2a, the
cutoff density is fixed at 7 = 0.5, while the projection sharpness takes
values of f = 1, f = 5, or f = 10. When § = 1, the topology
exhibits blurred boundaries and an increased volume fraction due to the
intermediate densities along the edges. Increasing f§ to 5 reduces these
diffuse regions and sharpens the boundaries, although some blurring
persists. A further increase to § = 10 introduces stronger nonlinearity,
steering the optimizer toward a different local minimum with a lower
volume fraction and more small-scale features.

Fig. D.2b explores the effect of varying the cutoff density 7 while
keeping the projection sharpness fixed at § = 5. For this study, we
consider three cutoff values: 7 = 0.4, 7 = 0.5, and 7 0.6. The
results demonstrate a strong sensitivity to 7, as each case converges
to a different topology. Similarly to previous discussions, this behavior
reflects the highly nonlinear and non-convex nature of the optimization
problem, where even small changes in input parameters can lead the
optimizer to different local minima. Lower cutoff values (77 0.4)
promote more compact designs, possibly due to the early removal of
understressed regions, whereas higher cutoff values (57 = 0.6) allow
material to be distributed further from the corners, producing a finer
and more distributed layout.

Appendix E. Nomenclature

E,; Penalized densities for element # and
candidate material i using the SIMP
interpolation function

I, First invariant of the Cauchy stress tensor
J, Second invariant of the Cauchy stress tensor
J3 Third invariant of the Cauchy stress tensor

N, Total number of stress constraints

P(z,u) Penalization term in the AL function

R Filter radius

Wy, Stiffness interpolation function

J® Augmented Lagrangian function at the kth
sub-problem

VF Multi-material volume fraction

N Number of elements in the finite element
mesh

f (@ Objective function

gsi(z, 1) Stress constraint of element # and material i

hy;(z,u) Modified stress constraint of element # and
material i for the AL method with inequality
constraints

n Number of load cases

p SIMP penalization parameter

q Nonlinear filter exponent

m Number of candidate materials

Ay Unified yield function
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Fig. D.2. Influence of the threshold projection parameters on the optimized topologies of the 2D corbel benchmark (L =2 m, P = 21.2 MN). Results are shown
after the first 10 AL subproblems. (a) Fixed cutoff density 77 = 0.5 with three projection sharpness values: f§ = 1,5, 10. (b) Fixed projection sharpness § = 5 with
three cutoff densities: 7 = 0.4,0.5,0.6.

=

=

Parameter used to control the aggressiveness
of the threshold projection function
Threshold density cutoff value

Weight factor associated with candidate
material i

Deviatoric component of the unified yield
function

Unified yield function parameter

Unified yield function parameter

Modified Lode angle

Penalty parameter at the kth iteration of the
AL method

Equivalent stress measure at the centroid of
element ¢ for material i

von Mises yield stress

Yield stress in equibiaxial compression
Yield stress in uniaxial compression

Yield stress in uniaxial tension

Lode angle

Parameter to update the penalty parameter
u®

Normalized equivalent stress measure

Strain displacement matrix at the centroid
of element #

Material moduli matrix of the solid material
i

Vector of element volume fractions for
material i

2 ==

TR ™

Oyi

Data availability

Force vector associated with load case ¢
Vector of element area (in 2D) or volume
(in 3D) of each finite element

Vector used to evaluate the first invariant of
the Cauchy stress tensor

Matrix used to evaluate the second invariant
of the Cauchy stress tensor

Global force vector

Global stiffness matrix

Filter matrix

Local stiffness matrix of element #
Displacement vector of element 7

Matrix of design variables

Displacement vector associated with load
case ¢

Vector of filtered densities

Global displacement vector

Vector of approximated Lagrange multipliers
at the kth iteration of the AL method
Adjoint vector associated with load case ¢
used for sensitivity evaluation

Vector of Cauchy stress values for material i
at the centroid of element #

Data will be made available upon request.
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