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 A B S T R A C T

Recent advances in multi-material topology optimization and additive manufacturing have enabled the design 
and fabrication of complex, high-performance structures. However, most existing approaches focus on stiffness 
maximization and overlook local material failure, which may render non-functional designs that fail under 
applied loading. Designing functional multi-material structures that can withstand mechanical loads requires 
accounting for the distinct failure behaviors of each candidate material. This study presents a framework for 
stress-constrained multi-material topology optimization that incorporates material-specific failure via a unified 
yield function capable of modeling pressure-independent and pressure-dependent materials, thus capturing the 
tension-compression strength asymmetry typical of polymers used in multi-material additive manufacturing 
(e.g., PolyJet 3D printing). Our method explicitly imposes local stress constraints for each material within 
every finite element, without relying on interpolated failure models. To ensure scalability and robustness, we 
solve the constrained optimization problem using the augmented Lagrangian method. We demonstrate the 
effectiveness of our approach through several numerical examples that highlight the benefits of combining 
materials with tension-compression strength asymmetries to reduce structural mass. Experimental validation 
of a fabricated design confirms the ability of our approach to predict structural performance and yield limits 
of multi-material, optimized components.
1. Introduction

Simulation-driven design techniques such as topology optimization 
are transforming engineering practice by enabling the exploration of 
complex design spaces and the creation of innovative, organic struc-
tures that surpass the capabilities of traditional analytical methods and 
human intuition. Despite these advances, identifying optimal designs 
remains a significant challenge, particularly when considering multiple 
materials with distinct mechanical properties and failure behaviors. 
While most existing formulations are limited to single-material struc-
tures, multi-material topology optimization offers a broader design 
space by enabling the strategic integration of materials with comple-
mentary properties, thereby enhancing mechanical and functional per-
formance. Building on our previous work on stress-constrained topol-
ogy optimization for lightweight, single-material structures [1], we 
extend our methodology to address the design of multi-material struc-
tures, thus offering greater design flexibility and the potential for 
substantial performance gains.

In this study, we introduce a multi-material stress-constrained for-
mulation that enforces a broad class of stress constraints through a 
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unified yield function [1]. Based on our previous work [1–3], we em-
ploy the augmented Lagrangian (AL) method to solve the optimization 
problem, ensuring mathematical rigor while accommodating a large 
number of local stress constraints efficiently. At each optimization iter-
ation, our AL-based framework imposes one local stress constraint per 
element and candidate material. Although we do not include explicit 
interfacial stress constraints, this modeling choice is supported by our 
experimental results on PolyJet-printed specimens, which exhibited no 
interfacial failure. By incorporating multiple materials with distinct 
failure criteria, we highlight the potential of exploiting their diverse 
mechanical properties to achieve lighter, more efficient structures.

The remainder of this paper is organized as follows. Section 2 out-
lines the motivation for this work and reviews relevant literature in the 
field. In Section 3, we introduce the multi-material stress-constrained 
topology optimization problem and discuss the AL-based solution strat-
egy. Section 4 presents several numerical examples that demonstrate 
the capabilities of the framework, while Section 5 details the printing 
process, material characterization, and experimental validation of a 
selected design. Section 6 summarizes the main contributions and im-
plications of this study. Afterward, we present several appendices that 
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provide supporting technical details. Appendix  A provides details of the 
sensitivity analysis, Appendix  B describes the postprocessing subroutine 
used to eliminate necking at the interfaces between materials, Appendix 
C presents convergence plots for all the examples discussed in this 
work, Appendix  D discusses the sensitivity of the framework to selected 
algorithmic parameters, and Appendix  E lists the nomenclature used 
throughout the paper.

2. Motivation and related work

Since its introduction by Bendsøe and Kikuchi [4], topology opti-
mization has evolved to handle a variety of design problems, including 
multi-material designs. Multi-material topology optimization has been 
applied to a wide range of problems, including the design of compliant 
force inverters [5], composites with tunable thermal expansion [6] or 
extremal bulk modulus [7], truss structures [8], and optimally graded 
structures with targeted eigenfrequencies [9]. Despite this progress, 
existing approaches often lack the ability to incorporate stress con-
straints explicitly or to address the distinct failure behaviors of multiple 
materials within a unified framework.

Given the limitations of most existing approaches, there is a critical 
need for a robust multi-material topology optimization framework that 
explicitly enforces stress constraints and captures the distinct failure 
criteria of different candidate materials. Developing such a framework 
requires addressing several key challenges, including handling a large 
number of stress constraints, considering multiple failure criteria, and 
resolving the singularity phenomenon inherent in stress-constrained 
problems [10,11]. Additionally, the framework must employ effective 
material interpolation schemes that discourage intermediate densities 
and prevent material mixing at the end of the optimization iterations.

Multiple material interpolation methods have been developed since 
Thomsen [12] first studied the topology optimization of structures 
made of one or two isotropic materials, with the majority of these meth-
ods extending the Solid Isotropic Material with Penalization (SIMP) 
interpolation scheme [8,13–15]. Among these, Discrete Material Op-
timization (DMO)-based approaches [16–18] have emerged as a par-
ticularly effective approach for problems involving many candidate 
materials. In DMO-based approaches, each design variable corresponds 
directly to the density of a specific material, providing a direct repre-
sentation of material distribution. Their simplicity and scalability have 
made DMO-based interpolation schemes widely adopted in density-
based topology optimization of multi-material structures [8,18–20]. In 
this work, we adopt the DMO-based interpolation scheme by Sanders 
et al. [18], which introduces a parameter that controls the extent of pe-
nalization of material mixing. This strategy ensures robust convergence 
and manufacturability, particularly when scaling to a large number of 
candidate materials.

Beyond the inherent complexities of multi-material topology opti-
mization, incorporating stress constraints into the optimization frame-
work introduces further complexity. Being a local quantity, stress must 
remain within material-specific limits at any point within the domain to 
prevent material failure. Enforcing these constraints directly leads to a 
large number of local constraints, which renders the optimization prob-
lem computationally intensive. To reduce the computational cost, many 
studies have adopted stress aggregation techniques [21–26], which 
approximate the maximum stress in the design domain using smooth 
global measures such as the Kreisselmeier-Steinhauser (KS) [27] and 
the p-norm functions [28]. Although these approaches reduce the 
number of constraints, the quality of the solutions heavily depends on 
the approximation parameters, and their effectiveness diminishes as the 
number of local constraints increases.

An alternative strategy employed in the literature involves using
clustering techniques [29–31], which aggregate stress over subregions, 
or clusters, within the domain. This strategy also reduces the number 
of constraints and improves computational tractability. However, the 
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quality of the results obtained using these methods is highly sensitive 
to how the clusters are defined and how many are used.

In contrast to aggregation-based approaches, the augmented La-
grangian (AL) method [32–34] offers a scalable and effective frame-
work for solving topology optimization problems with numerous local 
constraints. In the AL method, a constrained optimization problem 
is solved as a sequence of unconstrained problems aimed to mini-
mize the augmented Lagrangian function. This approach provides a 
robust framework for handling a wide range of optimization problems, 
including those with degenerate constraints [35,36].

The AL method has been employed to solve stress-constrained topol-
ogy optimization since the early 2000s. However, early implemen-
tations of this method exhibited limitations in robustness and con-
vergence. For instance, Pereira et al. [37] applied the AL method to 
density-based topology optimization using relaxed stress constraints, 
but their approach struggled to converge to clear 0/1 designs. Similarly, 
Emmendoerfer and Fancello [38,39] implemented an AL framework 
into the level-set topology optimization method to enforce local stress 
constraints, but their results were sensitive to parameter choices, which 
limited their general applicability. For a more detailed discussion of 
the early applications of AL-based approaches to stress-constrained 
topology optimization, interested readers are referred to Senhora et al. 
[40].

Recent work has overcome the limitations observed in early applica-
tions of the AL method to the stress-constrained problem, with modern 
formulations yielding robust, mesh-independent solutions [1,2,41]. In 
particular, these methods achieve stable convergence under mesh re-
finement and can handle problems with thousands to millions of local 
stress constraints. The AL method also enables efficient sensitivity anal-
ysis using the adjoint method, requiring only a single adjoint vector1 
to be computed at each optimization step—an important advantage for 
large-scale problems. Senhora et al. [40] demonstrated the efficiency 
of the AL method by solving static problems with over one million 
local stress constraints in a few hours on a standard desktop computer. 
Building on this, Giraldo-Londoño and Paulino [2] demonstrated that 
the computational cost of the AL method is comparable to that of a 
standard compliance minimization problem, with the primary overhead 
arising from the computation of the adjoint vector. Extending the 
method further, Giraldo-Londoño et al. [42] applied the AL framework 
to transient dynamic problems, demonstrating its ability to handle more 
than 200 million constraints. Collectively, these studies highlight the 
potential of the AL method as a powerful and scalable approach for 
practical engineering design.

Beyond the challenge of handling a large number of stress con-
straints, another major challenge in stress-constrained topology op-
timization is the stress singularity phenomenon. This issue was first 
reported by Sved and Ginos [10] and later by Kirsch [43] when dealing 
with truss optimization under stress constraints. The singularity phe-
nomenon arises when the optimal solution lies in a lower-dimensional, 
degenerate region of the design space that standard optimization meth-
ods cannot access, often leading to suboptimal designs. This problem 
has been addressed using two main strategies: constraint relaxation 
techniques [37,44–46] and vanishing constraints [46].

Constraint relaxation techniques address the singularity problem by 
softening the stress constraints (e.g., as in the 𝜀-relaxation approach 
by Cheng and Guo [44], where a constraint of the form 𝑔(z) ≤ 0 is 
converted into a constraint of the form 𝑔(z) ≤ 𝜀). Although effective, 
constraint relaxation techniques alter the shape of the design space 
and may yield infeasible solutions that violate the original, unrelaxed 
constraints. In contrast, the vanishing constraint approach preserves 
the shape of the feasible domain by introducing constraints that vanish

1 This is valid only for linear and nonlinear elastic systems with a single 
load case. For example, multiple load cases require the solution of multiple 
adjoint problems, as shown in Appendix  A.
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Table 1
Comparison between stress-constrained multi-material topology optimization formulations.
 Approach Representative works Multi-material handling Validation Observations  
 Global (e.g., 𝑝-norm) Jeong et al. [47], Chu 

et al. [55], Chu et al. 
[48], Xu et al. [49], Chen 
et al. [52], Liao et al. 
[56], Yaghoobi et al. [57]

Single yield criterion (von 
Mises)

Numerical only Loses control over local 
nature of stress and quality 
of solutions are parameter 
dependent

 

 Local (e.g., AL method) Kundu et al. [53], Kundu 
and Zhang [58], Ding 
et al. [54], Kundu and 
Zhang [59]

Distinct yield criteria (e.g., 
von Mises, Drucker–Prager, 
Tsai–Wu) with yield 
criteria interpolation

Mostly numerical, 
with one showing 
experimental results 
[58]

Yield function interpolation 
adds nonlinearities and 
results depend on 
parameter tuning

 

 This work – Distinct yield criteria, 
without yield function 
interpolation

Numerical and 
experimental

Overcomes limitations of 
interpolation approaches

 

(i.e., become zero) as the corresponding element density approaches 
zero, thus avoiding explicit constraint relaxation [40]. Building on the 
linear vanishing constraint by Cheng and Jiang [46], Giraldo-Londoño 
and Paulino [1] introduced a polynomial vanishing constraint that has 
proven effective when solving topology optimization problems with 
local stress constraints. The polynomial vanishing constraint has been 
successfully employed in the topology optimization of structures made 
from pressure-independent or pressure-dependent materials [1], struc-
tures under general dynamic loading [42], structures constrained by the 
first principal stress [3], and structures made of nonlinear materials [2].

While significant progress has been made for single-material struc-
tures, stress-constrained multi-material topology optimization remains 
less mature. Most existing approaches approximate material failure 
using interpolated stress measures, typically based on the von Mises 
criterion. For example, Jeong et al. [47] introduced the Separable Stress 
Interpolation (SSI) scheme to apply von Mises stress constraints in 
multi-material designs, while Chu et al. [48] extended this concept 
within the level-set framework. Other studies have adopted global 
𝑝-norm stress measures based on the von Mises stress to solve op-
timization problems involving mass minimization [49], compliance 
minimization [50], stress minimization under mass constraints [51], 
and volume minimization under thermomechanical loads and stress 
constraints [52].

However, the von Mises criterion is not suitable for materials that 
exhibit tension-compression strength asymmetry or sensitivity to hy-
drostatic pressure, such as concrete, polymers, and foams, as well 
as the polymeric materials commonly used in multi-material addi-
tive manufacturing. In the context of single-material topology opti-
mization, Giraldo-Londoño and Paulino [1] addressed this limitation 
by introducing a unified yield criterion capable of reproducing several 
classical pressure-independent and pressure-dependent yield criteria, 
including von Mises, Drucker–Prager, Tresca, Mohr–Coulomb, Bresler–
Pister, and Willam–Warnke. Kundu et al. [53] later extended this 
concept to stress-constrained multi-material topology optimization and 
used a SIMP-like yield function interpolation scheme to enforce stress 
constraints across different materials. While promising, a key limitation 
of this approach is that the interpolated yield surfaces at intermediate 
densities lack physical meaning and may overestimate material strength 
unless the interpolation parameters are carefully tuned. A similar is-
sue arises in the work of Ding et al. [54], who proposed a scalar 
unified Stress Yield Factor (SYF) that combines the von Mises and 
Drucker–Prager criteria into a single, interpolated yield function per 
element. Although effective for that specific combination of yield crite-
ria, the SYF approach does not generalize easily to other yield functions 
and introduces additional parameters that influence the interpolation 
behavior.

An overview of existing studies on stress-constrained multi-material 
topology optimization is provided in Table  1. Among the studies listed 
in the table, only a limited number of them explicitly consider distinct 
yield criteria [53,54,59]. Despite differences in their formulations, 
these methods rely on nonlinear interpolation of yield functions to 
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combine multiple material failure behaviors into a single, approximate 
criterion, which introduces additional assumptions and complexity. 
While these strategies reduce the number of constraints per element 
from 𝑚 to one, where 𝑚 is the number of candidate materials, they 
introduce approximate, non-physical yield surface representations, par-
ticularly during early optimization stages when intermediate densities 
and material mixing are common. These methods also require param-
eter tuning to prevent strength overestimation when material mixing 
is present, and add further nonlinearities to an already highly non-
linear optimization problem, increasing the likelihood of producing 
suboptimal solutions.

To address the challenges discussed above, this study adopts a 
local formulation that assigns one stress constraint per element and 
per candidate material, eliminating the need to interpolate between 
yield criteria. Each material retains its own failure criterion, ensur-
ing strict enforcement of stress constraints throughout the optimiza-
tion process and enabling clear material separation based on local 
strength demands. This approach does not require tuning yield surface 
interpolation parameters and directly avoids strength overestimation 
by enforcing each material failure criterion separately. Although our 
approach requires imposing a larger number of stress constraints be-
cause it requires enforcing 𝑚 constraints per element instead of one, 
the overall computational cost remains comparable to that of prob-
lems in which yield criteria interpolation is used, as the augmented 
Lagrangian method efficiently handles the expanded constraint set. 
Notably, despite enforcing one stress constraint per element and per 
candidate material, the sensitivity analysis still requires only a single 
adjoint vector, just as in the single-material case [1,2]. Importantly, 
our study is among the first to experimentally assess the performance of 
multi-material structures designed through stress-constrained topology 
optimization, offering direct evidence of structural performance and 
demonstrating the practical viability of the proposed framework.

3. Problem formulation and methodology

This section discusses the formulation of the stress-constrained 
multi-material topology optimization problem introduced in this study 
and the associated AL-based solution strategy. We begin by defining 
the optimization problem, which seeks to minimize a weighted mass 
objective while enforcing one stress constraint per element and can-
didate material. We then provide details of the unified yield criterion 
by Giraldo-Londoño and Paulino [1], which we use to characterize the 
failure behavior of each candidate material. Finally, we outline the 
AL-based strategy employed to solve the stress-constrained topology 
optimization problem efficiently.

3.1. Multi-material stress-constrained formulation

Our formulation aims to find the lightest structure capable of with-
standing applied loads without failing locally at any point within the 
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domain. We prevent material failure by imposing local stress con-
straints, 𝑔𝓁𝑖, at the centroid of each finite element, 𝓁 = 1,… , 𝑁 , in the 
domain, and for each candidate material, 𝑖 = 1,… , 𝑚. The optimization 
problem is formulated as follows: 

min
𝐳∈[0,1]𝑁×𝑚

𝑓 (𝐳) =
∑𝑚

𝑖=1 𝛾𝑖𝐀
𝑇𝐕𝑖

∑𝑚
𝑖=1 𝛾𝑖𝐀𝑇 𝟏

s.t. 𝑔𝓁𝑖(𝐳,𝐮) ≤ 0, 𝓁 = 1,… , 𝑁 ; 𝑖 = 1,… , 𝑚

with: 𝐊𝐮 = 𝐅.

(1)

Here, 𝑓 (𝐳) represents a weighted mass ratio, expressed in terms of the 
design variable matrix, 𝐳 = {𝑧𝓁1,… , 𝑧𝓁𝑚}𝑁𝓁=1. Each design variable, 
𝑧𝓁𝑖 ∈ [0, 1], indicates the presence of material 𝑖 in element 𝓁. The 
parameter 𝛾𝑖 is a material-specific weight factor, which may correspond 
to properties such as mass density or material cost. The vector 𝐀 =
{

|

|

𝛺𝓁
|

|

}𝑁
𝓁=1 contains the area (in 2D) or volume (in 3D) of each finite 

element, while 𝐕𝑖 = 𝑚𝑉
(

𝐲𝑖
) represents the vector of volume frac-

tions for candidate material 𝑖, computed via the threshold projection 
function [60]: 

𝑚𝑉
(

𝑦𝓁𝑖
)

=
tanh(𝛽𝜂̄) + tanh

(

𝛽
(

𝑦𝓁𝑖 − 𝜂̄
))

tanh(𝛽𝜂̄) + tanh(𝛽(1 − 𝜂̄))
, (2)

where parameters 𝛽 and 𝜂̄ control the aggressiveness and cutoff density 
of the projection (see Appendix  D.2), respectively, and 𝐲𝑖

(

𝐳𝑖
)

= 𝐏𝐳𝑖 is 
the vector of filtered densities for candidate material 𝑖, computed using 
the polynomial filter [61]: 

𝑃𝑖𝑗 =
𝑤𝑖𝑗𝐴𝑗

∑𝑁
𝑘=1 𝑤𝑖𝑘𝐴𝑘

,  with 𝑤𝑖𝑗 = max
⎡

⎢

⎢

⎣

0, 1 −
‖

‖

‖

𝐱𝑖 − 𝐱𝑗
‖

‖

‖2
𝑅

⎤

⎥

⎥

⎦

𝑞

, (3)

where ‖‖
‖

𝐱𝑖 − 𝐱𝑗
‖

‖

‖2
 is the Euclidean distance between the centroids of 

elements i and j, R is the filter radius, and q is the filter exponent.
The displacement field, u, is obtained by solving the linear equilib-

rium equation 𝐊𝐮 = 𝐅, where K is the global stiffness matrix and F is 
the global load vector. The stiffness matrix is assembled from element 
contributions as: 

𝐊 =
𝑁
∑

𝓁=1
𝐤𝓁 ,  with 𝐤𝓁 =

𝑚
∑

𝑖=1
𝑊𝓁𝑖𝐤𝓁𝑖 and 𝐤𝓁𝑖 = ∫𝛺𝓁

𝐁𝑇
𝓁𝐃0𝑖𝐁𝓁d𝐱. (4)

Here, ∑𝑁
𝓁=1 denotes the standard finite element (FE) assembly oper-

ator. For each element 𝓁, 𝐤𝓁𝑖 represents the stiffness matrix when 
the element is filled entirely with material 𝑖, where 𝐁𝓁 is the strain-
displacement matrix, 𝐃0𝑖 is the material moduli matrix of candidate 
material 𝑖, and 𝛺𝓁 is the domain occupied by the element. The effective 
stiffness matrix, 𝐤𝓁 , is then computed as a weighted sum of the material 
stiffness matrices 𝐤𝓁𝑖, with weights 𝑊𝓁𝑖 = 𝑚𝑊

(

𝐸𝓁𝑖
) obtained from the 

modified Discrete Material Optimization (DMO) interpolation function 
[18]: 

𝑚𝑊
(

𝐸𝓁𝑖
)

= 𝐸𝓁𝑖

𝑚
∏

𝑗=1
𝑗≠𝑖

(

1 − 𝜏𝐸𝓁𝑗
)

, (5)

where 𝐸𝓁𝑖 are the penalized densities for element 𝓁 and material 𝑖, 
and 𝜏 ∈ [0, 1] is a mixing penalty factor that controls the extent of 
penalization of material mixing. For instance, a value of 𝜏 = 0 imposes 
no penalization, allowing material mixing, while a value of 𝜏 = 1 fully 
penalizes material mixing, promoting distinct material phases.

The penalized densities, 𝐸𝓁𝑖 = 𝑚𝐸
(

𝑉𝓁𝑖
)

, are computed using the 
SIMP interpolation function, 
𝑚𝐸

(

𝑉𝓁𝑖
)

= 𝜀 + (1 − 𝜀)𝑉 𝑝
𝓁𝑖, (6)

where 𝑝 is the penalization power and 𝜀 ≪ 1 is an Ersatz parameter used 
to prevent numerical singularities when 𝑉𝓁𝑖 ←←→ 0. With these variable 
transformations defined, Algorithm 1 summarizes the global stiffness 
matrix computation in a concise step-by-step form.

Fig.  1 illustrates the behavior of the modified DMO interpola-
tion function used to compute the interpolated stiffness matrix. For 
4 
Algorithm 1 Step-by-step computation of the global stiffness matrix

Step 1. Compute filtered densities (Eq. (3)):

𝑦𝓁𝑖 =
𝑁
∑

𝑗=1
𝑃𝓁𝑗 𝑧𝑗𝑖

Step 2. Obtain the projected (physical) densities (Eq. (2)):
𝑉𝓁𝑖 = 𝑚𝑉 (𝑦𝓁𝑖).

Step 3. Evaluate the penalized densities (Eq. (6)):
𝐸𝓁𝑖 = 𝑚𝐸 (𝑉𝓁𝑖).

Step 4. Evaluate the element-wise material weights using the modified DMO 
interpolation function (Eq. (5)):
𝑊𝓁𝑖 = 𝑚𝑊 (𝐸𝓁𝑖).

Step 5. Obtain the effective stiffness matrix of element 𝓁 and assemble the 
global stiffness matrix (Eq. (4)):

𝐤𝓁 =
𝑚
∑

𝑖=1
𝑊𝓁𝑖 𝐤𝓁𝑖, 𝐊 =

𝑁
∑

𝓁=1
𝐤𝓁 .

demonstration purposes, we consider a simplified case in which the 
DMO function is used to compute the effective Young’s modulus of 
an element 𝓁 when considering two candidate materials with Young’s 
moduli 𝑌 0

𝑖 = 1, 𝑖 = 1, 2. The effective Young’s modulus is given by 
𝑌𝓁 =

∑2
𝑖=1 𝑊𝓁𝑖𝑌 0

𝑖 . Figs. 1a–c illustrate how the interpolation function 
evolves as 𝜏 and 𝑝 vary. In Fig.  1a, for 𝜏 = 0 and 𝑝 = 1, the interpolation 
reduces to a linear combination of the individual Young’s moduli. 
Because material mixing is not penalized in this case (i.e., 𝜏 = 0), 
the topology optimization results would produce intermediate density 
values and mixed-material regions. As shown in Fig.  1b, increasing 
𝜏 and 𝑝 progressively reduces the efficiency of intermediate densities 
and material mixing.2 Specifically, 𝑝 > 1 penalizes intermediate values 
of 𝑉𝓁𝑖 (analogously to the single-material SIMP interpolation), while 
𝜏 ∈ (0, 1] penalizes material mixing (i.e., having 𝑉𝓁1 and 𝑉𝓁2 be simul-
taneously nonzero becomes less efficient as 𝜏 increases). In the limiting 
case shown in Fig.  1c, when 𝜏 = 1, the interpolated modulus drops to 
zero if both penalized densities are equal to one, and the maximum 
stiffness is achieved only when one material density equals one and 
the other equals zero. Hence, 𝑝 > 1 discourages intermediate density 
values, while 𝜏 = 1 strongly discourages material mixing, promoting 
discrete zero–one solutions without 𝑉𝓁1 and 𝑉𝓁2 being simultaneously 
equal to one within a given element.

3.2. Stress constraint definition

As previously discussed, our formulation prevents material failure 
by enforcing local stress constraints on each element 𝓁 and candidate 
material 𝑖. In this study, we adopt the polynomial vanishing constraint 
introduced by Giraldo-Londoño and Paulino [1], which extends the tra-
ditional linear vanishing constraint [46] by including a cubic term that 
penalizes constraint violation more severely. The cubic term drives the 
solution to a density distribution with overall lower stresses [2] com-
pared with the linear vanishing constraint. The polynomial vanishing 
constraint is defined as: 
𝑔𝓁𝑖(𝐳,𝐮) = 𝐸𝓁𝑖𝛬𝓁𝑖

(

𝛬2
𝓁𝑖 + 1

)

≤ 0, 𝓁 = 1,… , 𝑁 ; 𝑖 = 1,… , 𝑚, (7)

2 In the context of this example, material mixing occurs when both 𝑉𝓁1 and 
𝑉  are simultaneously nonzero.
𝓁2
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Fig. 1. Influence of penalization parameters 𝜏 and 𝑝 on the Young’s modulus interpolation 𝑌𝓁 for 2 candidate materials. Panels correspond to (a) 𝜏 = 0, 𝑝 = 1; 
(b) 𝜏 = 0.5, 𝑝 = 1.5; (c) 𝜏 = 1, 𝑝 = 3.
Fig. 2. Comparison between the traditional vanishing constraint [46] and the 
polynomial vanishing constraint [1] as a function of 𝛬𝓁𝑖. Values of 𝛬𝓁𝑖 > 0
indicate stress constraint violation.

where 𝐸𝓁𝑖 are the penalized densities and 𝛬𝓁𝑖 is a unified criterion 
that characterizes the failure behavior within element 𝓁 for candidate 
material 𝑖. By including 𝐸𝓁𝑖, the constraint naturally vanishes as the 
material density approaches zero, thereby avoiding stress singularities 
in void regions. Fig.  2 provides a graphical representation of the 
polynomial vanishing constraint and compares it with the traditional 
linear vanishing constraint by Cheng and Jiang [46].

The unified failure function, 𝛬𝓁𝑖, is defined as: 
𝛬𝓁𝑖 = 𝜎𝑒𝑞𝓁𝑖 − 1, (8)

where 𝜎𝑒𝑞𝓁𝑖 is a dimensionless equivalent stress measure that generalizes 
multiple classical yield criteria. The equivalent stress measure is given 
by: 
𝜎𝑒𝑞𝓁𝑖 = 𝛼̂(𝜃)

√

3𝐽2 + 𝛽𝐼1 + 𝛾̂𝐼21 , (9)

where 𝐼1 is the first invariant of the Cauchy stress tensor, 𝝈𝓁𝑖, and 𝐽2 is 
the second invariant of the deviatoric stress tensor, 𝐬𝓁𝑖. The scalar terms 
𝛼̂(𝜃), 𝛽, and 𝛾̂ define the shape of the yield surface and are chosen to 
match specific failure criteria [1].

The stress invariants are computed as: 
𝐼1 = 𝐌𝝈𝓁𝑖 (10)

and 
𝐽 = 1𝝈𝑇 𝐕𝝈 , (11)
2 3 𝓁𝑖 𝓁𝑖

5 
where 𝐌 = [1 1 0] and 𝝈𝓁𝑖 = [𝜎11 𝜎22 𝜎12]𝑇  for 2D problems, and 
𝐌 = [1 1 1 0 0 0] and 𝝈𝓁𝑖 = [𝜎11 𝜎22 𝜎33 𝜎23 𝜎13 𝜎12]𝑇  for 3D problems. 
Likewise, the matrix 𝐕 used to evaluate the second invariant of the 
deviatoric stress tensor is given by 

𝐕 =
⎡

⎢

⎢

⎣

1 −1∕2 0
−1∕2 1 0
0 0 3

⎤

⎥

⎥

⎦

(12)

for 2D problems and 

𝐕 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 −1∕2 −1∕2 0 0 0
−1∕2 1 −1∕2 0 0 0
−1∕2 −1∕2 1 0 0 0
0 0 0 3 0 0
0 0 0 0 3 0
0 0 0 0 0 3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(13)

for 3D problems.
The Cauchy stress vector for candidate material 𝑖 is evaluated at the 

centroid of element 𝓁 as: 
𝝈𝓁𝑖 = 𝐃0𝑖𝐁𝓁𝐮𝓁 , (14)

where 𝐃0𝑖 is the material moduli matrix of candidate material 𝑖, 𝐁𝓁 is 
the strain displacement matrix at the centroid of element 𝓁, and 𝐮𝓁 is 
the displacement vector of element 𝓁.

The term 𝛼̂(𝜃) in Eq. (9) is referred to as the deviatoric function [1], 
and it defines the shape of the yield surface when intersected by the 
deviatoric plane. The deviatoric function is given by 

𝛼̂(𝜃) = 𝐴 cos2 𝜃̂ + 𝐵

𝐶 cos 𝜃̂ +
√

𝐷 cos2 𝜃̂ + 𝐸
, (15)

where 
𝜃̂ = 1

3
sin−1[𝜁 sin 3𝜃] + 𝜃̄, 𝜁 ≤ 1, (16)

and 

𝜃 = 1
3
sin−1

(

−
3
√

3
2

𝐽3
𝐽 3∕2
2

)

, −𝜋
6
≤ 𝜃 ≤ 𝜋

6
, (17)

is the Lode angle [62], which is a function of the third invariant of the 
deviatoric stress tensor given by 

𝐽3 =
1
3
𝐼1

(

𝐽2 −
1
9
𝐼21

)

(18)

for 2D problems and by 
𝐽3 = 𝑠11𝑠22𝑠33 + 2𝜎23𝜎13𝜎12 −

(

𝑠11𝜎
2
23 + 𝑠22𝜎

2
13 + 𝑠33𝜎

2
12
)

(19)

for 3D problems, where 𝑠𝑢𝑣, 𝑢, 𝑣 = 1,… , 3 are the components of the 
deviatoric stress tensor, 

𝐬 = 𝝈 −
𝐼1𝐌

𝑇
. (20)
𝓁𝑖 𝓁𝑖 3
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Table 2
Parameters defining the unified equivalent stress measure.
 Failure criterion 𝛼̂(𝜃)

 𝐴 𝐵 𝐶 𝐷 𝐸 𝜁 𝜃̄ 𝛽 𝛾̂ 
 von Misesa 0 1

𝜎lim
0 0 1 1 0 0 0 

 Drucker–Pragerb 0 𝜎𝑐+𝜎𝑡
2𝜎𝑐𝜎𝑡

0 0 1 1 0 𝜎𝑐−𝜎𝑡
2𝜎𝑐𝜎𝑡

0 
 Willam–Warnkec 𝐴𝑊 𝐵𝑊 𝐶𝑊 𝐷𝑊 𝐸𝑊 1 𝜋

6
𝜎𝑏−𝜎𝑡
3𝜎𝑏𝜎𝑡

0 
 Mohr–Coulombd 𝐴𝑀𝐶 0 1 0 0 ≤ 1 𝜃 𝜎𝑐−𝜎𝑡

3𝜎𝑐𝜎𝑡
0 

a 𝜎lim denotes the von Mises yield stress.
b 𝜎𝑐 and 𝜎𝑡 denote the yield stress in uniaxial compression and uniaxial tension, respectively.
c 𝜎𝑏 denotes yield stress in equibiaxial compression.
d 𝐴𝑀𝐶 = (2𝛼∕3)

√

3 + (𝛽∕𝛼)2 and tan 𝜃 = 𝛽
𝛼
√

3
 where 𝛼 = 𝜎𝑐+𝜎𝑡

2𝜎𝑐𝜎𝑡
 and 𝛽 = 𝜎𝑐−𝜎𝑡

2𝜎𝑐𝜎𝑡
.

As shown by Giraldo-Londoño and Paulino [1], a suitable choice of 
parameters 𝐴–𝐸, 𝜁 , 𝜃̄, 𝛽, and ̂𝛾, conducts to the representation of several 
classical yield criteria including von Mises, Drucker–Prager, Willam–
Warnke, and Mohr–Coulomb. Table  2 presents the parameters used to 
generate the yield surfaces for the various criteria employed in this 
study. The parameters for the Willam–Warnke yield criterion used in 
Section 5 are defined as 𝐴 = 𝐴𝑊 , 𝐵 = 𝐵𝑊 , 𝐶 = 𝐶𝑊 , 𝐷 = 𝐷𝑊 , 𝐸 = 𝐸𝑊 , 
which are given by 

𝐴W = 4
𝜎𝑐

√

2
15

(

𝑟2𝑐 − 𝑟2𝑡
)

, 𝐵W = 1
𝜎𝑐

√

2
15

(

𝑟𝑐 − 2𝑟𝑡
)2 , 𝐶W = 2𝑟𝑐

(

𝑟2𝑐 − 𝑟2𝑡
)

,

𝐷W = 4𝑟2𝑐
(

𝑟𝑐 − 2𝑟𝑡
)2 (𝑟2𝑐 − 𝑟2𝑡

)

, 𝐸W = 𝑟2𝑐
(

𝑟𝑐 − 2𝑟𝑡
)2 (5𝑟2𝑡 − 4𝑟𝑡𝑟𝑐

)

,

(21)

where 

𝑟𝑐 =
√

6
5

𝜎𝑏𝜎𝑡
3𝜎𝑏𝜎𝑡 + 𝜎𝑐

(

𝜎𝑏 − 𝜎𝑡
)  and 𝑟𝑡 =

√

6
5

𝜎𝑏𝜎𝑡
𝜎𝑐

(

2𝜎𝑏 + 𝜎𝑡
) , (22)

with 𝜎𝑐 and 𝜎𝑡 representing the yield stress in uniaxial compression and 
uniaxial tension, respectively, and 𝜎𝑏 denoting the yield stress in equibi-
axial compression. This formulation expands the design space for multi-
material structures by exploiting the distinct mechanical responses 
of different materials. For instance, it could allow the combination 
of pressure-dependent materials with high compressive strength and 
ductile materials with high tensile strength.

For the Mohr–Coulomb yield criterion, the rounding parameter 𝜁 ≤
1 enables the unified yield function to produce a smooth approximation 
of the yield surface [63], thereby avoiding numerical issues from gradi-
ent discontinuities during topology optimization. Interested readers are 
referred to the work of Giraldo-Londoño and Paulino [1] for a detailed 
discussion of the unified yield function and its parameters.

Although we enforce element-wise stress constraints per material, 
we do not include explicit interfacial stress constraints in our for-
mulation. This choice is supported by our experimental validation 
using PolyJet-printed specimens (see Section 5), which showed no 
interfacial failure due to the highly integrated material transitions 
inherent to this printing process [64,65]. Moreover, by enforcing stress 
constraints directly on each material within every element, the pro-
posed framework avoids key drawbacks of yield-function interpolation 
schemes—namely, the introduction of additional nonlinearities into 
an already highly nonlinear problem and the reliance on blending 
parameters that, if not carefully tuned, may overestimate yield strength 
and lead to premature failure of the resulting designs.

3.3. Solution via the augmented Lagrangian method

Following our previous work [2,3], we solve the optimization prob-
lem (1) using an AL-based approach [32–34]. Using this approach, we 
solve (1) as a sequence of unconstrained minimization problems3 whose 

3 Although we refer to the AL sub-problems as unconstrained, they in fact 
contain box constraints on the design variables (𝑧 ∈ [0, 1]), as shown in (23).
𝓁𝑖

6 
solutions converge to that of the original optimization problem with 
local constraints. Specifically, at each step 𝑘 of the AL method, we solve 
the following minimization sub-problem: 

min
𝐳∈[0,1]𝑁×𝑚

𝐽 (𝑘) (𝐳,𝐮) = 𝑓 (𝐳) + 1
𝑚𝑁

𝑚
∑

𝑖=1

𝑁
∑

𝓁=1

[

𝜆(𝑘)𝓁𝑖 ℎ𝓁𝑖 (𝐳,𝐮) +
𝜇(𝑘)

2
ℎ2𝓁𝑖 (𝐳,𝐮)

]

,

𝑘 = 0, 1, 2,…

(23)

where 𝐽 (𝑘) (𝐳,𝐮) is the normalized AL function [2], which consists of 
the objective function 𝑓 (𝐳) from (1) and a penalization term defined in 
terms of Lagrange multiplier estimators, 𝜆(𝑘)𝓁𝑖 , a quadratic penalty factor, 
𝜇(𝑘), and equivalent equality constraints, ℎ𝓁𝑖(𝐳,𝐮), given by: 

ℎ𝓁𝑖 (𝐳,𝐮) = max

(

𝑔𝓁𝑖(𝐳,𝐮),
−𝜆(𝑘)𝓁𝑖

𝜇(𝑘)

)

, (24)

where 𝑔𝓁𝑖(𝐳,𝐮) are the stress constraints defined in (7). After solving 
each AL sub-problem, both 𝜆(𝑘)𝓁𝑖  and 𝜇(𝑘) are updated as follows: 

𝜆(𝑘+1)𝓁𝑖 = 𝜆(𝑘)𝓁𝑖 + 𝜇(𝑘)ℎ𝓁𝑖(𝐳(𝑘),𝐮) (25)

𝜇(𝑘+1) = min
(

𝛼̃𝜇(𝑘), 𝜇max
)

, (26)

where 𝛼̃ > 1 controls the quadratic penalty factor update rate and 𝜇max
is an upper bound used to prevent ill-conditioning.

The term 𝑚𝑁 in (23) is used to normalize the penalty term in the AL 
function, preventing it from growing unbounded as the number of stress 
constraints increases. This normalization improves numerical stability 
and has been shown to produce nearly mesh-independent designs, even 
for problems involving hundreds of thousands of stress constraints (e.g., 
see [2]). We have successfully applied this normalization strategy to a 
broad range of stress-constrained problems with applications spanning 
linear and nonlinear elasticity [2,3,40], dynamics [42], and various 
yield criteria [1].

To solve the AL sub-problems (23) efficiently using gradient-based 
optimization algorithms, we need to compute the sensitivities of the 
augmented Lagrangian function 𝐽 (𝑘) with respect to the design variables 
𝐳. These sensitivities are derived in detail in Appendix  A.

Fig.  3 presents a schematic flowchart of our AL-based multi-material 
topology optimization framework. The process begins with input data 
related to the finite element problem and the optimizer, and with 
initialization of 𝜆(𝑘)𝓁𝑖  and 𝜇(𝑘), for 𝑘 = 0. With these inputs, we then 
use the method of moving asymptotes (MMA) [66] to approximately 
solve the AL sub-problem defined in (23). After obtaining an ap-
proximate solution, we update the Lagrange multiplier estimators and 
quadratic penalty factors via Eqs. (25) and (26). This cycle repeats until 
convergence.

Convergence is achieved when the relative change in design vari-
ables satisfies 1

𝑚𝑁
∑

|

|

|

𝐳(𝑘)𝑖+1 − 𝐳(𝑘)𝑖
|

|

|

< Tol, and the maximum normalized 
equivalent stress, 𝜎̃𝑒𝑞𝓁𝑖 = 𝐸𝓁𝑖𝜎

𝑒𝑞
𝓁𝑖 , remains within the prescribed tolerance, 

i.e., max(𝜎̃𝑒𝑞) < 1+TolS. Here, 𝐸 = 𝑚 (𝑉 ) is defined in Eq.  (6), Tol 
𝓁𝑖 𝓁𝑖 𝐸 𝓁𝑖
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Fig. 3. Schematic flowchart of the AL-based topology optimization framework 
we employ to solve the multi-material topology optimization problem with 
local stress constraints.

and TolS are user-defined tolerances for the design variable change 
and the stress constraints, respectively, and 𝐳(𝑘)𝑖  and 𝐳(𝑘)𝑖+1 denote the 
design variable matrices at two successive MMA iterations within AL 
sub-problem k.

To account for multiple load cases, the AL formulation must be 
extended accordingly. Specifically, each additional load case introduces 
𝑚𝑁 new stress constraints, resulting in a total of 𝑁𝑐 = 𝑚𝑛𝑁 stress 
constraints for 𝑛 load cases. The AL function must be expanded to 
include a separate set of Lagrange multiplier estimators, 𝜆(𝑐)𝓁𝑖 , and 
quadratic penalty terms, 𝜇2 ℎ

(𝑐)
𝓁𝑖

2
, for each element 𝓁, material 𝑖, and load 

case 𝑐. Additionally, because each load case contributes its own set of 
equilibrium equations in (1), the sensitivity analysis requires solving a 
separate adjoint problem for each load case. Complete details of this 
formulation and sensitivity derivations are provided in Appendix  A.

4. Numerical examples

This section presents two numerical examples that demonstrate the 
capabilities of the proposed framework in designing multi-material 
structures with various yield criteria. To ensure the reproducibility 
of the results, Table  3 provides the input parameters used to solve 
all the problems discussed next. All results were obtained using a 
Matlab implementation of the formulation discussed previously. First, 
we discuss the design of a three-dimensional corbel and highlight the 
benefits of stress-constrained multi-material topology optimization, in 
which lighter structures can be obtained by the combination of two 
materials with different yield criteria. Next, we discuss the design of 
an airless tire composed of three different materials and subjected 
to multiple load cases, including normal and shear tractions used to 
simulate ground contact forces as the tire rotates. For clarity and ease 
of comparison among the optimized designs discussed next, we report 
the multi-material volume fraction 𝑉 𝐹  rather than the weighted mass 
7 
Table 3
Input parameters used to solve all examples.
 Parameter Value  
 Initial Lagrange multiplier estimators, 𝜆(0)𝓁𝑖 0  
 Initial penalty factor, 𝜇(0) 10  
 Maximum penalty factor, 𝜇max 10,000 
 Penalty factor update parameter, 𝛼̃ 1.1  
 SIMP penalization factor, 𝑝 3.5  
 Nonlinear filter exponent, 𝑞 3  
 Ersatz parameter, 𝜀 10−8  
 MMA iterations per AL step, MMA_Itera 5  
 MMA move limit, move 0.15  
 Initial threshold projection factor, 𝛽b 1  
 Threshold projection factor increment, 𝛽incb 1  
 Threshold projection factor frequency, 𝛽freqb 5  
 Maximum threshold projection factor, 𝛽maxb 10  
 Threshold projection density, 𝜂̄ 0.5  
 Mixing penalty factor, 𝜏 1  
 Initial guess, 𝑧(0)𝓁𝑖 0.5  
 Convergence tolerance on design variables, Tol 0.002  
 Convergence tolerance on stress constraints, TolS 0.003  
 Maximum number of AL steps, MaxIter 100  
a In practice, the AL function is approximately minimized by perform-
ing a limited number of MMA iterations at each AL step. In this study, 
we employ 5 MMA iterations per AL step [1,2].
b Parameter 𝛽 starts at 1 and increases by 𝛽inc every 𝛽freq AL steps 
and up to a maximum of 𝛽max.

ratio 𝑓 (𝐳) in (1),

𝑉 𝐹 =
∑𝑚

𝑖=1 𝐀
𝑇𝐕𝑖

𝐀𝑇 𝟏
,

which is independent of the material density parameters, 𝛾𝑖, used in the 
optimization statement (1).

4.1. Corbel design

This example aims to illustrate the benefits of using a stress-
constrained multi-material topology optimization formulation com-
pared to using a single-material formulation. To demonstrate this, we 
optimize a corbel under three different scenarios: (i) considering a 
single von Mises candidate material (material 1), (ii) considering a 
single Drucker–Prager candidate material (material 2), and (iii) con-
sidering both materials together as candidate materials. The geometry 
and boundary conditions for all three design cases are shown in Fig. 
4. The corbel is subjected to a load 𝑃 = 600 kN, applied at its tip and 
distributed over a height 𝑑 = 0.2𝐿. To exploit symmetry, one-half of 
the domain is discretized into 314,432 eight-node regular hexahedral 
elements, with symmetry boundary conditions imposed along the x-y
plane.

The material properties for each candidate material are summarized 
in Table  4. As shown in the table, both materials are assumed to be 
linear elastic, each with a Young’s modulus, 𝐸 = 30 GPa, and a Poisson’s 
ratio, 𝜈 = 0.2. However, they differ in their yield criteria. Material 1 
follows the von Mises yield criterion and has a yield stress of 𝜎lim =
20 MPa, while material 2 is governed by the Drucker–Prager yield 
criterion, and it is characterized by a uniaxial tensile yield stress of 𝜎𝑡 =
10 MPa and a uniaxial compressive yield stress of 𝜎𝑐 = 35 MPa. Note 
that 𝜎𝑡 < 𝜎lim and 𝜎𝑐 > 𝜎lim, indicating that the Drucker–Prager material 
is weaker in tension and stronger in compression compared to the von 
Mises material. Consequently, in design scenario (iii), the optimizer is 
expected to assign the von Mises material to tension-dominated regions 
and the Drucker–Prager material to compression-dominated regions of 
the domain. This material distribution enables more efficient use of 
the available materials, resulting in a lighter structure compared to 
design scenarios (i) and (ii), where only a single candidate material 
is available.
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Fig. 4. Geometry, boundary conditions, and candidate materials for the corbel problem. The problem is defined using 𝐿 = 1 m, 𝑡 = 0.5 m, and 𝑃 = 600 kN 
uniformly distributed across 𝑑 = 0.2 m. The optimizer is allowed to choose between two candidate materials: a von Mises material shown in white and a 
Drucker–Prager material shown in blue.
Table 4
Material properties for the multi-material corbel.
 Material property Material 1 Material 2 
 Weight factor, 𝛾𝑖 1 1  
 Young’s modulus, E (GPa) 30 30  
 Poisson’s ratio, 𝜈 0.2 0.2  
 von Mises stress limit, 𝜎lim (MPa) 20 –  
 Drucker–Prager stress limit in tension, 𝜎𝑡 (MPa) – 10  
 Drucker–Prager stress limit in compression, 𝜎𝑐 (MPa) – 35  
Fig.  5 depicts the results obtained using a filter radius of 𝑅 = 0.125
m. The left column displays the optimized topologies for the three 
design cases, and the middle column showcases the 3D-printed models. 
The structures were fabricated using a Bambu Lab A1 multi-color 
printer and PLA material, solely to demonstrate the manufacturability 
of the optimized multi-material topologies. Finally, the right column 
illustrates the normalized equivalent stress maps, 𝜎̃𝑒𝑞𝓁𝑖 = 𝐸𝓁𝑖𝜎

𝑒𝑞
𝓁𝑖 , for 

each of the resulting designs. In design case 1 (Fig.  5a), where only 
material 1 is used, the optimized topology is symmetric about the 
horizontal center plane. This symmetry follows from the von Mises 
criterion, which assumes identical tensile and compressive strengths, 
thus leading to identical material distributions in tension-dominated 
and compression-dominated regions of the domain. In design case 2 
(Fig.  5b), where only material 2 is considered, the topology becomes 
asymmetric due to the tension-compression strength asymmetry in 
the Drucker–Prager criterion. The members in the tension-dominated 
region are thicker, consistent with the material compressive strength 
being 3.5 times larger than its tensile strength (see Table  4).

The combined-material case (Fig.  5c) integrates features from both 
single-material solutions. The tension-dominated region resembles the 
von Mises case, while the compression-dominated region resembles 
the Drucker–Prager case. This multi-material topology leverages the 
strength characteristics of each material: the von Mises material is 
assigned to regions governed by tensile stresses, whereas the Drucker–
Prager material is assigned to compression-dominated zones. The out-
come is a 14% reduction in total volume fraction compared with the 
8 
single-material designs, as indicated by the optimized values (𝑉 𝐹 ) in 
Fig.  5. These results demonstrate the capability of the multi-material 
formulation to achieve lightweight, high-performance structures.

The stress maps and yield surfaces shown on the right column of 
Fig.  5 confirm that all three designs satisfy the local stress constraints. 
The equivalent stress values remain less than or equal to one across all 
elements, indicating that no constraint violations occur. Additionally, 
the principal stress points evaluated at the centroid of each element 
lie on or within their respective yield surfaces, further validating con-
straint satisfaction.4 In the multi-material design, the equivalent stress 
distribution exhibits similar patterns to the von Mises stress distribution 
in the single-material case. In particular, both cases show a pronounced 
stress concentration at the central joint, the intersection where the 
members made of von Mises material meet, indicating that the location 
of maximum stress is preserved between the two designs. This behavior 
highlights the physical consistency maintained in our approach: each 
material responds according to its own failure mechanism, and the 
optimizer naturally assigns each material where it can best meet the 
local performance demands. This demonstrates the robustness of our 

4 Principal stresses are sorted at each evaluation point, i.e., 𝜎1≥𝜎2≥𝜎3. The 
apparent clustering of points toward the 𝜎1 axis results from the principal-stress 
ordering convention and constitutes a visualization artifact, not a physical bias 
in the stress distribution.
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Fig. 5. Optimized topologies (left), and equivalent stress maps (right) for the multi-material corbel design using: (a) a von Mises material, (b) a Drucker–Prager 
material, and (c) a combination of the two materials. The corresponding yield surfaces (shown in white and blue) and principal stresses (shown in red) for 
each design case are displayed alongside the stress maps. The 3D-printed corbels (middle), which are 150 mm tall, demonstrate the practical realization of the 
optimized designs.
formulation in simultaneously respecting distinct yield criteria while 
effectively handling a large number of stress constraints.

The convergence plots for the three design cases are presented in 
Fig.  C.1 in Appendix  C. These plots show the evolution of the maximum 
equivalent stress and the volume fraction for the three design cases as 
a function of the AL iterations.

4.2. Airless tire design

This example demonstrates the solution of a multi-material problem 
involving multiple load cases and pattern repetition, as depicted in Fig. 
6. The objective is to design a multi-material airless tire with a radius 
of 𝑅 = 40 mm and a thickness of 𝑡 = 8 mm. Due to symmetry, we only 
1 3

9 
modeled one-half of the domain and discretized it into 77,200 eight-
node regular hexahedral elements, and applied symmetry boundary 
conditions along the x-y plane. We enforce pattern repetition through 
a modified filter operator, P, which constraints the design space to 
density fields exhibiting angular symmetry (see [42]). Specifically, as 
shown in Fig.  6b, we impose periodicity on material distribution every 
𝜋∕2 radians, which corresponds to a pattern repetition with 𝑁𝑝 =
4 [42].

The wheel is subjected to normal and shear tractions representing 
ground contact forces. To capture variations in the load position as the 
wheel rotates, three distinct load cases are considered, corresponding to 
normal and tangential load combinations applied at angular positions 
𝛼 = 0◦, 45◦, and 90◦. For each load case, a distributed normal force 
of total magnitude 𝐹 = 700 𝑁 is applied over an angular span of 
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Table 5
Material properties for the multi-material airless tire.
 Material property Material 1 Material 2 Material 3 
 Weight factor, 𝛾𝑖 0.77 1 10  
 Young’s modulus, E (GPa) 200 200 200  
 Poisson’s ratio, 𝜈 0.3 0.3 0.3  
 Drucker–Prager tension stress limit, 𝜎𝑡 (MPa) 120 36 30  
 Drucker–Prager compression stress limit, 𝜎𝑐 (MPa) 36 120 30  
𝜃0 = 15◦, following a cosine distribution. The peak of each distributed 
load occurs at the angular position, 𝛼, as seen in Fig.  6c. To account 
for frictional effects, a tangential force is also applied using a friction 
coefficient 𝜇 = 1, resulting in distributed tangential loads following the 
same cosine distribution as the normal loads.

For this design, we considered three candidate materials, each mod-
eled using the Drucker–Prager yield criterion to capture the asymmetry 
between tensile and compressive strengths. This approach enables the 
optimizer to assign materials based on whether a region is tension- or 
compression-dominated—something not possible with the von Mises 
criterion, where only the material with the highest yield strength would 
be favored. The mechanical properties for these candidate materials are 
listed in Table  5.

To ensure practical manufacturability, we defined two passive re-
gions. The first, assigned to material 3, forms a uniform layer of 
thickness 𝑡1 = 2 mm and located along the outer boundary to provide 
a smooth and functional contact surface (see Fig.  6). The second, 
assigned to material 1, is another uniform layer of thickness 𝑡2 = 2 mm
and located along the inner boundary surrounding the fixed nodes. 
Additionally, a high weight factor, 𝛾3 = 10, is used to penalize the use of 
material 3 elsewhere, ensuring it remains confined to the first passive 
region.

As discussed before, the multiple load case formulation is detailed in 
Appendix  A. For the airless tire design problem, we consider three load 
cases and three candidate materials, which results in a total number of 
stress constraints of 𝑁𝑐 = 9𝑁 , where 𝑁 is the number of elements in the 
mesh. With 𝑁 = 77,200, this results in 𝑁𝑐 = 694, 800 stress constraints 
that must be handled by the optimizer.

Fig.  7 illustrates the optimized topology and corresponding equiva-
lent stress distributions obtained using a filter radius of 𝑅 = 2.5 mm. 
Specifically, Figs.  7a-b illustrate the optimized material distribution 
and the 3D-printed model, respectively,5 whereas Fig.  7c shows the 
envelope of the maximum normalized equivalent stress across all load 
cases.6 These results show that all candidate materials remain within 
their respective yield limits. Note that the passive regions in Fig.  7c are 
presented with the color of their corresponding material as the stress 
constraints are not evaluated in these regions. Combined, these results 
highlight the effectiveness of our framework in handling multiple load 
cases within a multi-material design context. Interested readers are 
referred to Fig.  C.2 in Appendix  C, which illustrates the evolution of 
the volume fraction and the maximum normalized equivalent stress for 
this problem.

Table  6 summarizes the computational cost for all numerical prob-
lems discussed above. All optimization iterations were performed in 
Matlab R2024b on a desktop computer equipped with an Intel Xeon 
W-2225 (4.10 GHz) CPU, 64 GB of RAM, and an NVIDIA RTX A4000 
GPU. For each problem, the table reports the mesh size, total constraint 
evaluations, number of MMA iterations, average time per iteration, and 
total runtime.

5 The airless tire design was scaled by a factor of 2.5 to ensure manufactura-
bility, as certain features of the original design were too small to be printed 
accurately with the nozzle size of the Bambu Lab A1 multi-color printer.

6 The stress maps are symmetrized to reflect the periodicity of the problem, 
with stresses from the first quadrant mirrored across the domain.
10 
From these results, we can observe that treating the stress con-
straints independently for each material and each element does not 
inherently result in a significant increase in optimization time. For 
example, the multi-material corbel problem, despite having roughly 
four times the number of elements as the airless tire problem, required 
only about 15% longer to complete. This suggests that the computa-
tional framework scales adequately with mesh refinement. However, 
because the stress and variable-change tolerances differed between 
the two problems, the total runtime appears to be influenced more 
by optimization parameters than by the number of elements or stress 
constraints alone.

5. Experimental validation

In this section, we discuss the experimental validation of our stress-
constrained multi-material topology optimization formulation. The val-
idation process began by fabricating test specimens used to measure 
the elastic modulus and yield strength of two candidate materials 
under uniaxial tension and uniaxial compression, respectively. The 
experimentally measured elastic properties and yield strengths were 
used as inputs for our topology optimization framework, which we 
used to obtain various optimized beam designs. Finally, we 3D-printed 
the optimized designs and evaluated their performance via three-point 
bending tests. This integrated process enables us to assess the predictive 
capabilities and practical applicability of our framework.

5.1. Multi-material 3D printing

In this work, we used PolyJet 3D printing to fabricate both material 
test specimens used for material characterization and the optimized 
multi-material beams used for validation of our optimization frame-
work. This 3D printing technology was selected for its ability to fab-
ricate multi-material structures, rather than just multi-color structures, 
which is essential for validating our optimization framework. Addition-
ally, we selected this 3D printing technology because it offers superior 
resolution and surface quality [67], which we deemed essential for 
the experimental validation. In this work, we employed the Stratasys 
J5 MediJet 3D printer using VeroCyan and Digital ABS, which offer 
distinct mechanical properties suited for tension- and compression-
dominated regions, respectively, as discussed later.

The PolyJet 3D printing process involves a layer-by-layer depo-
sition wherein various photopolymer materials, sprayed using inkjet 
printing heads, are immediately cured with UV light to solidify and 
bond each layer [68]. Due to the droplet-level mixing, PolyJet can 
produce smooth, gradient-like material interfaces, reducing interfacial 
stress concentrations and promoting a strong bond between materi-
als [64,65]. All test specimens and optimized beams were printed with 
a glossy finish and oriented on the print bed as shown in Fig.  8. After 
printing, all specimens were submerged in water for 24 h to dissolve 
the water-soluble support material (WSS150), polished with Grade No. 
00 sandpaper to remove surface imperfections, and conditioned in a 
light-blocking chamber with air circulation for 48 h to remove residual 
moisture and ensure consistent material properties before testing.

5.2. Material characterization

To quantify the mechanical properties of the candidate materials 
(i.e., VeroCyan and Digital ABS), we conducted standardized uniaxial 
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Fig. 6. Problem definition for the multi-material airless tire design. (a) Multi-material airless tire domain and boundary conditions; (b) schematic illustrating the 
pattern repetition of densities in the design; and (c) the loading cases considered in the design, where the multi-material airless tire is subjected to normal and 
shear tractions representing the contact forces exerted by the ground on a wheel while neglecting the dynamic effects. The domain is defined using 𝑅1 = 40 mm, 
𝑅2 = 6 mm, 𝑡1 = 2 mm, 𝑡2 = 2 mm, and 𝑡3 = 8 mm. The normal traction is given by 𝑓 (𝜃) = 𝐶̂ cos

(

𝜋
𝜃0
(𝜃 − 𝛼)

)

, where 𝐶̂ is a constant determined such that the total 
magnitude of the normal force equals 𝐹 = 700 N, 𝜃0 = 15◦, and 𝛼 ∈ {0, 𝜋∕4, 𝜋∕2}. The shear traction is given by 𝑇 = 𝜇𝑓 (𝜃), where 𝜇 = 1.0.
Fig. 7. Multi-material airless tire design with three different candidate materials. (a) Optimized multi-material distribution, (b) 3D-printed airless tire, and (c) 
equivalent stress map. The resulting design has a volume fraction of 0.473 and was obtained considering the Drucker–Prager yield criterion for the three candidate 
materials.
tension and compression tests in accordance with ASTM D695 and 
ASTM D638, respectively [69,70]. For the tensile tests, we adopted 
11 
Type IV dogbone specimens, and for the compression tests, we used 
standard rectangular prisms (see Fig.  8). Each material was tested 
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Table 6
Computational cost for the numerical benchmark problems in Section 4.
 Design problem Mesh

size
Number of 
constraints

Iterations Time/iter.
(s)

Total time
(h)

 

 von Mises corbel 314,432 314,432 224 27.3 1.7  
 Drucker–Prager corbel 314,432 314,432 393 33.0 3.6  
 Multi-material corbel 314,432 628,864 182 41.5 2.1  
 Airless tire 77,200 694,800 236 27.7 1.8  
Fig. 8. Printing layout on the Stratasys J5 MediJet printing bed, illustrating the orientation of the specimens used for material characterization, along with a 
multi-material beam designed based on the measured mechanical properties of the constituent materials.
Table 7
Material properties for the multi-material beam problem.
 Material property VeroCyan Digital ABS 
 Weight factor, 𝛾𝑖 1.15 1  
 Young’s modulus, E (MPa) 2,588 2,162  
 Poisson’s ratio, 𝜈 0.3 0.3  
 Uniaxial tension stress limit, 𝜎𝑡 (MPa) 37.3 39.6  
 Uniaxial compression stress limit, 𝜎𝑐 (MPa) 74.1 52.9  
 Equibiaxial compression stress limit, 𝜎𝑏 (MPa) 74.1a 52.9a  
a The equibiaxial compression stress limit used in the Willam–Warnke failure criterion was assumed to be equal to the uniaxial compression 
stress limit due to the lack of experimental testing equipment for biaxial compression tests.
using four specimens per loading mode, with tensile tests conducted 
at 5 mm/min and compression tests at 1 mm/min using an MTS 370 
load frame under displacement-controlled conditions.

Fig.  9 depicts the resulting stress–strain curves for both materials 
and Table  7 summarizes the corresponding Young’s modulus and yield 
stresses obtained from these curves and employed later in the numerical 
models.7 These results show that the Digital ABS has a higher yield 
stress in tension, whereas the VeroCyan exhibits a greater yield stress in 
compression. Based on these findings, we anticipate that the optimizer 
will place Digital ABS in the tension-dominated regions of the beam and 
VeroCyan in the compression-dominated regions to maximize structural 
performance while minimizing material usage.

5.3. Multi-material beam designs

Using the measured material properties (i.e., the Young’s moduli 
and yield stresses discussed in the previous section), we optimized the 
topology of a simply supported beam. The beam geometry, loading 

7 The yield stresses in both tension and compression were determined using 
the 0.2% offset method. According to this method, the yield stress is obtained 
from the intersection between the stress–strain curve and a line parallel to its 
elastic region but offset by 0.2% strain on the strain axis. We employed this 
method because our materials do not exhibit a distinct yield point.
12 
conditions, supports, and passive regions are illustrated in Fig.  10. 
The simply supported beam has length 𝐿 = 150 mm, height 𝐿∕4, and 
width 𝐿∕6. For this problem we considered two load cases. The first 
consists of a vertical load, 𝑃 = 3, 000 N, applied over a region of width 
𝑑 = 6 mm, and the second consists of a lateral load, 𝛼P, with 𝛼 = 0.15, 
distributed over a region of width 𝑑 = 6 mm and height ℎ = 6 mm. 
The lateral load was introduced to mitigate the risk of lateral buckling 
instabilities observed in preliminary experimental tests conducted on 
beams designed solely for the vertical load case.8 Besides considering 
two load cases, we also considered passive regions of width 𝑏 = 6 mm
and thickness 𝑡 = 1.5 mm at the support locations (see Fig.  10) to 
prevent material removal in these critical areas and to avoid issues 
related to stress singularities.

To obtain the numerical results discussed next, we discretized half of 
the beam domain into 98,784 regular hexahedral elements and imposed 
symmetry boundary conditions along the y-z plane at the midspan 
location. Additionally, we used a filter radius, 𝑅 = 6 mm, a convergence 
tolerance for the design variables, Tol = 0.0015, and a convergence 
tolerance on the stress constraints, TolS = 0.008. Finally, we employed 
a continuation scheme on the DMO mixing penalty factor, 𝜏, starting 

8 We note that buckling constraints are not included in the present 
formulation, and incorporating them explicitly is part of our future work.
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Fig. 9. Stress–strain curves in tension and compression for the two candidate materials: VeroCyan (blue) and Digital ABS (gray).
Fig. 10. Geometry and loading conditions for the beam problem. The geome-
try is defined using 𝐿 = 150 mm, 𝑏 = 6 mm, 𝑑 = 6 mm, ℎ = 1.5 mm, 𝑡 = 1.5 mm, 
load 𝑃 = 3, 000 N, and a lateral load applied as a fraction of the vertical load 
where 𝛼 = 0.15.

at 𝜏 = 0 and increasing incrementally by 0.5 every two AL iterations, 
until reaching a value of 𝜏 = 1.

To incorporate the tension-compression strength asymmetry into 
our multi-material formulation, we must select an appropriate yield cri-
terion to characterize the failure behavior of each of the two candidate 
materials. Given the limited availability of experimental data to know 
the exact shape of the yield surfaces for our materials, we considered 
three different yield criteria, namely Drucker–Prager, Mohr–Coulomb, 
and Willam–Warnke.9

9 All of these criteria account for different yield stresses in tension and 
compression but differ in the shape of their yield surfaces and the parameters 
required to define them. For instance, the Drucker–Prager and Mohr–Coulomb 
criteria require only uniaxial tensile and compressive yield stresses, whereas 
the Willam–Warnke criterion requires the yield stress in equibiaxial compres-
sion in addition to the two aforementioned yield stresses. Due to the lack of 
13 
Fig.  11 presents the results obtained for each of the yield criteria 
considered in this study. The left column of Fig.  11 displays the result-
ing multi-material topologies for each of the three designs. As shown, 
each yield criterion produced a truss-like structure and, as expected, the 
optimizer assigned VeroCyan to the compression-dominated regions of 
the beams and Digital ABS to the tension-dominated regions. The mid-
dle column of Fig.  11 shows the resulting 3D-printed topologies. These 
prints reflect the final geometries obtained after postprocessing,10 and 
demonstrate the feasibility of manufacturing complex multi-material 
structures with sharp material transitions. Finally, the right column of 
Fig.  11 displays the envelope of equivalent stress maps for each design, 
showing that all stress constraints were satisfied locally. Because half of 
the domain was discretized using 98,784 regular hexahedral elements, 
and we considered two candidate materials and two load cases, our 
AL-based formulation effectively enforced 395,136 stress constraints.

Fig.  11 illustrates how the choice of the yield criterion influences the 
optimized volume fraction and the material distribution of the multi-
material designs. The Drucker–Prager criterion produced a total volume 
fraction of 0.192, while the Willam–Warnke design resulted in the 
lowest volume fraction of 0.186, and the Mohr–Coulomb design yielded 
the highest total volume fraction of 0.210. Despite these differences, a 
consistent trend emerges. Specifically, across all three cases, VeroCyan 
consistently comprised approximately 56% of the total solid material, 
with the remainder assigned to Digital ABS. This preference reflects the 
tendency of the optimizer to exploit the superior compressive capacity 
of VeroCyan, whose uniaxial compressive yield strength is about 40% 
higher than that of Digital ABS, while its uniaxial tensile strength 
is only 6% lower than that of Digital ABS. Consequently, across all 
three criteria the designs show a modest but consistent bias toward 
VeroCyan. The evolution of material fractions and maximum equivalent 

additional experimental data, we conservatively assume that the yield stress 
in equibiaxial compression is equal to the yield stress in uniaxial compression.
10 We postprocessed the resulting material density fields to remove neck-
ing artifacts that might compromise the structural performance of the 
multi-material beams, as detailed in Appendix  B.
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Fig. 11. Multi-material beam designs for different yield criteria: (a) Drucker–Prager, (b) Willam–Warnke, and (c) Mohr–Coulomb. For each criterion, the figure 
shows the optimized topology (left), the corresponding 3D-printed beam (middle), and the normalized equivalent stress map (right).
stress during the optimization iterations is provided in Fig.  C.3 from 
Appendix  C, corroborating these trends.

5.4. Experimental testing and discussion

We evaluated the mechanical performance of the optimized multi-
material beams using three-point bending tests. The setup, illustrated 
in Fig.  12a, is summarized below:

1. We prepared two printed replicas of each optimized beam design 
shown in Fig.  11 for testing.

2. We employed a custom three-point bending fixture to replicate 
the supports and loading conditions of the numerical model.

3. We filed the indenter tip down to a width of 6 mm, correspond-
ing to the dimension d in Fig.  10.

4. We applied a controlled displacement at the mid-span at a 
constant rate of 1 mm/min.

5. We continuously recorded the reaction force until failure.
6. We used a high-speed camera to capture snapshots of each test 
at the instant of failure.

Fig.  12b shows the load–displacement curves obtained from the 
three-point bending tests. The beam designed using the Drucker–Prager 
yield criterion failed at a maximum load of 2051 N, which is 32% 
lower than the design load of 3000 N. The beam designed with the 
Willam–Warnke criterion reached a peak load of 2728 N, falling short 
of the design load by 9%. Similarly, the Mohr–Coulomb design failed at 
2636 N, underestimating the design load by 12%. All beams failed with 
displacements below 6 mm. This behavior is consistent with our earlier 
findings that stress-constrained solutions yield compliance values of the 
same order of magnitude as minimum-compliance formulations [42], 
since stress constraints indirectly limit the overall deflection of the 
optimized structure. Interestingly, despite the constituent materials 
exhibiting ductile behavior in uniaxial tests (see Fig.  9), the Drucker–
Prager and Willam–Warnke beams exhibited brittle failure, whereas the 
Mohr–Coulomb design showed signs of minor plastic deformation prior 
to failure, suggesting a slightly more ductile response compared to the 
other two designs.
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Fig.  12c shows high-speed camera snapshots captured at the instant 
of failure for each beam design. In all cases, failure initiated at one of 
the top joints, rather than in the regions predicted to exhibit the highest 
equivalent stresses (see the right column of Fig.  11). This discrepancy 
in failure location, coupled with the premature failure observed during 
testing, may be attributed to several contributing factors.

First, the stress state at the failure locations differs significantly from 
the uniaxial stress conditions used during material characterization. As 
a result, the selected yield criteria may be inadequate for predicting 
failure of the candidate materials under complex multiaxial stress 
states. Additional testing, including biaxial tension and compression 
tests, could provide more information to identify the most accurate 
shape of the yield surfaces needed to model the failure behavior of the 
candidate materials. Second, all yield criteria used in this study assume 
isotropic material behavior and do not account for the anisotropy 
induced by the PolyJet printing process. Prior work has shown that the 
mechanical properties of PolyJet-printed components are sensitive to 
print orientation [71–73]. As shown in Fig.  8, the tensile specimens 
were printed with the layer lines aligned with the loading direction, 
while the compression specimens had layers oriented perpendicular 
to the load. These print orientations represent idealized conditions 
leading to the highest possible uniaxial yield strengths, which can 
result in the overestimation of the actual strength in more complex, 
multiaxial stress states experienced by the optimized beams. Finally, 
potential manufacturing defects, such as internal voids, may also have 
contributed to the observed failure modes by locally reducing material 
strength [74].

Despite the fact that the beams did not reach their intended design 
load, the experimental results demonstrate that our model captures 
the structural capacity of the multi-material beams with reasonable 
accuracy. It should be emphasized that this validation is limited to 
components fabricated at the tested laboratory scale using PolyJet-
printed photopolymers, and the results may not directly extend to 
larger-scale structural applications or to parts manufactured by other 
additive manufacturing technologies. Possible extensions could incor-
porate anisotropic yield criteria such as the Tsai–Wu [75] and the 
Liu-Huang-Stout [76] criteria, which may enable the framework to 
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Fig. 12. Experimental validation of the multi-material beam topologies. (a) Test setup, (b) load–displacement curves comparing the performance under different 
yield criteria, and (c) high-speed snapshots capturing the failure mechanisms at maximum load for specimens corresponding to each yield criterion.
Table 8
Computational cost for the experimental validation problems in Section 5.
 Design problem Mesh size Number of constraints Iterations Time/iter.

(s)
Total time
(h)

 

 Drucker–Prager beam 98,784 395,136 228 27.3 1.7  
 Willam–Warnke beam 98,784 395,136 273 26.4 2.0  
 Mohr–Coulomb beam 98,784 395,136 254 29.7 2.1  
more accurately model material behavior across different manufactur-
ing processes and length scales, including structural-scale components.

For completeness, Table  8 summarizes the computational cost for 
the experimental validation problems presented in this section. The re-
ported runtimes were obtained using the same computing environment 
described in Section 4. As in the numerical benchmarks, the table lists 
the mesh size, total constraint evaluations, number of MMA iterations, 
average time per iteration, and total runtime.

5.5. Limitations and future work

While this work advances the field of stress-constrained multi-
material topology optimization, our validation was limited to Poly-
Jet printing, which produces smooth, gradient-like interfaces through 
droplet-level material mixing. This process minimizes interfacial
15 
stresses and promotes strong bonding between materials [64,65], jus-
tifying the omission of interfacial stress constraints in our work. How-
ever, weaker interfaces are often encountered in other additive manu-
facturing processes, such as fused deposition modeling (FDM), where 
imperfect interlayer adhesion frequently governs failure. In such cases, 
explicitly modeling interfacial failure becomes essential to ensure re-
liable model predictions. Another important direction is the incorpo-
ration of material mixing models, which would allow the framework 
to represent graded transitions between materials. Such gradients, 
inspired by biological systems, can reduce stress concentrations and 
improve load transfer across interfaces, but they require constitutive 
descriptions of intermediate mixtures that go beyond the discrete 
material phases considered here. Extending the framework with both 
interface-specific stress constraints and material mixing models could 
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therefore broaden its applicability and capture a wider range of bond-
ing behaviors across additive manufacturing processes and material 
systems.

Beyond interfacial considerations, the mechanical response of Poly-
Jet parts is also known to depend strongly on build orientation. Prior 
studies have reported orientation-dependent anisotropy in PolyJet-
printed parts [71–73], and additional modeling uncertainty may arise 
from unquantified manufacturing defects such as internal voids. Al-
though a rigorous experimental characterization of yield behavior, 
including biaxial tension-compression testing of base materials and 
systematic quantification of print-orientation effects, is outside the 
scope of the present study, such efforts would substantially improve the 
predictive capabilities of the computational framework and help close 
the gap between numerical predictions and the performance of physical 
prototypes. We are currently working in this direction by extending the 
formulation to account for anisotropic yield criteria (e.g., Tsai–Wu [75] 
and Liu-Huang-Stout [76]), which will allow the framework to better 
capture orientation-dependent effects and broaden its applicability to a 
wider class of materials and processes. To enable practical application 
to the design of large-scale structures, future research could also ex-
plore additional manufacturing technologies and explicitly incorporate 
manufacturing uncertainties.

Besides process-related considerations, geometric nonlinearities and 
structural-scale effects also present important directions for future ex-
tension. In the beam example, a lateral load was introduced to mitigate 
the risk of buckling observed in preliminary tests, but buckling itself 
was not considered in the formulation. Incorporating such constraints 
directly will be an important next step to ensure that optimized struc-
tures reach their yield limit before experiencing geometric instabilities. 
Another natural extension of the framework is the inclusion of displace-
ment constraints, which would allow serviceability limits to be enforced 
explicitly. Such constraints can restrict excessive nodal deflections, 
thereby ensuring that the small-deformation assumptions adopted in 
the present study remain valid. By combining stress, stability, and 
displacement considerations, the formulation could potentially address 
both strength and serviceability requirements in a unified optimization 
setting. Overall, these developments will extend the applicability of 
the framework to more realistic structural-scale problems and reinforce 
its potential as a robust, high-fidelity tool for the design of multi-
material structures under complex mechanical constraints, with strong 
applications in additive manufacturing, lightweight design, and the 
optimization of functional, mechanically resilient systems.

6. Concluding remarks

This work introduced a unified framework for stress-constrained 
topology optimization of multi-material structures, addressing the crit-
ical need to incorporate distinct failure criteria for each candidate 
material. Building upon the unified yield criterion from our previous 
work [1], the framework introduced in this study enables the design 
of structures composed of a wide range of materials exhibiting ei-
ther pressure-dependent or pressure-independent failure behavior. In 
contrast to existing approaches, which approximate yielding behav-
ior via nonlinear interpolation between multiple yield criteria, our 
method enforces one stress constraint per element and per candidate 
material. This direct enforcement eliminates several key drawbacks of 
interpolation-based schemes: (i) additional nonlinearities introduced 
by the interpolation functions, (ii) the need for parameter tuning to 
control the blending behavior, (iii) inaccurate representation of ma-
terial yielding during early optimization stages when material mixing 
is common, and (iv) the risk of overestimating material strength that 
happens with some interpolation functions. In addition to these advan-
tages, our approach remains computationally efficient. Although we 
impose one constraint per element and candidate material, we solve 
the resulting highly constrained optimization problem using the AL 
method, which requires computing only a single adjoint vector per 
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load case at each optimization step. From the mathematical structure 
of the optimization problem, the computational cost of our approach 
is expected to remain comparable to that of methods based on yield 
function interpolation. This is because the dominant operations, which 
include solving the displacement problem, evaluating stresses in all 
elements and candidate materials, and computing one adjoint problem 
per load case, are identical in both approaches. Consequently, the 
overall number of floating-point operations should be approximately 
the same in either approach.

We demonstrated the capabilities of our approach through a series 
of three-dimensional numerical examples involving different geome-
tries, loading scenarios, and yield criteria. These examples included 
design problems such as a multi-material corbel and an airless tire, 
which showed the scalability of our approach. In the corbel exam-
ple, the optimizer effectively leveraged the distinct strengths of each 
candidate material, producing a multi-material design with signifi-
cantly lower volume fraction than single-material designs. This result 
highlights the potential of the framework to reduce mass without 
compromising structural integrity by strategically allocating materi-
als based on local stress demands. In the airless tire problem, our 
framework successfully handled nearly 700,000 local stress constraints 
resulting from 77,200 finite elements, three candidate materials, and 
three load cases, with one constraint imposed per element and material 
for each load case. Despite the high constraint count, the method 
achieved stable convergence and produced physically interpretable, 
manufacturable designs. These results confirm that the method not 
only scales to large-scale, realistic design problems but also generates 
efficient structures that satisfy stress constraints locally.

In addition to the numerical examples, we performed experimental 
testing on optimized multi-material beams fabricated via PolyJet 3D 
printing to assess the capabilities of the proposed approach to de-
sign structures that perform as intended. The designs were based on 
the Drucker–Prager, Willam–Warnke, and Mohr–Coulomb yield criteria 
and were evaluated under three-point bending. The beam designed 
with the Drucker–Prager criterion failed at a maximum load 30% 
below the intended design load, while the Willam–Warnke and Mohr–
Coulomb designs failed, respectively, at a maximum load 12% and 
9% below the design load. Although all beams failed before reaching 
their design load, the experimental results indicate that our model 
captures the structural response of the multi-material designs with 
reasonable accuracy. The observed discrepancies between the numeri-
cal predictions and the experimental results suggest limitations in the 
use of isotropic yield criteria and highlight the need to account for 
print-induced anisotropy.
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Appendix A. Sensitivity analysis

Based on our previous work [1,2,42,77], we use the AL method 
to find the solution of the constrained optimization problem (1) as a 
sequence of unconstrained optimization sub-problems, each aiming to 
minimize the AL function. Specifically, at each step 𝑘 of the AL method 
we solve the following minimization problem: 

min
𝐳∈[0,1]𝑁×𝑚

𝐽 (𝑘) (𝐳,𝐮) = 𝑓 (𝐳) + 1
𝑚𝑁

𝑃 (𝐳,𝐮) , 𝑘 = 0, 1, 2,… (27)

where 𝑓 (𝐳) is the objective function and 𝑃 (𝐳,𝐮) is a penalization term, 
which is given by:

𝑃 (𝐳,𝐮) =
𝑚
∑

𝑖=1

𝑁
∑

𝓁=1

[

𝜆(𝑘)𝓁𝑖 ℎ𝓁𝑖 (𝐳,𝐮) +
𝜇(𝑘)

2
ℎ2𝓁𝑖 (𝐳,𝐮)

]

. (28)

We approximately solve each optimization sub-problem using a 
gradient-based algorithm. Accordingly, we evaluate the sensitivity of 
(27) using the chain rule, as follows: 
𝜕𝐽 (𝑘)

𝜕𝐳
= 𝜕𝐄

𝜕𝐳
𝜕𝐽 (𝑘)

𝜕𝐄
+ 𝜕𝐕

𝜕𝐳
𝜕𝐽 (𝑘)

𝜕𝐕
+ 𝜕𝐖

𝜕𝐳
𝜕𝐽 (𝑘)

𝜕𝐖
, (29)

where 𝐄 =
{

𝐸𝓁1,… ,𝐸𝓁𝑚
}𝑁
𝓁=1, 𝐕 =

{

𝑉𝓁1,… ,𝑉𝓁𝑚
}𝑁
𝓁=1, and 𝐖 =

{

𝑊𝓁1,… ,𝑊𝓁𝑚
}𝑁
𝓁=1.

Based on the functional form of the AL function in (27), we rewrite 
(29) as follows: 
𝜕𝐽
𝜕𝑧𝓁𝑖

=
𝜕𝑓
𝜕𝐄𝑖

⋅
𝜕𝐄𝑖
𝜕𝑧𝓁𝑖

+
𝜕𝑓
𝜕𝐕𝑖

⋅
𝜕𝐕𝑖
𝜕𝑧𝓁𝑖

+
𝜕𝑓
𝜕𝐖𝑖

⋅
𝜕𝐖𝑖
𝜕𝑧𝓁𝑖

+ 1
𝑚𝑁

(

𝜕𝑃
𝜕𝐄𝑖

⋅
𝜕𝐄𝑖
𝜕𝑧𝓁𝑖

+ 𝜕𝑃
𝜕𝐕𝑖

⋅
𝜕𝐕𝑖
𝜕𝑧𝓁𝑖

+ 𝜕𝑃
𝜕𝐖𝑖

⋅
𝜕𝐖𝑖
𝜕𝑧𝓁𝑖

)

.
(30)

To simplify the notation, we have dropped the superscript k in (30) and 
in the subsequent equations of this section.

Given the structure of the objective function in the optimization 
problem (1), we obtain the following: 
𝜕𝑓
𝜕𝑉𝓁𝑖

=
𝛾𝑖𝐴𝓁

∑𝑚
𝑘=1 𝛾𝑘𝐀𝑇 𝟏

and 𝜕𝑓
𝜕𝑊𝓁𝑖

= 0. (31)

Additionally, from (24), and (7) we obtain 
𝜕𝑃
𝜕𝑉𝓁𝑖

= 0, 𝜕𝑃
𝜕𝑊𝓁𝑖

= 0, (32)

and 
𝜕𝑃
𝜕𝐸𝓁𝑖

=
𝑚
∑

𝑘=1

𝑁
∑

𝑗=1

[

𝜆𝑗𝑘 + 𝜇ℎ𝑗𝑘 (𝐳,𝐮)
]

[ 𝜕ℎ𝑗𝑘 (𝐳,𝐮)
𝜕𝐸𝓁𝑖

+
𝜕ℎ𝑗𝑘 (𝐳,𝐮)

𝜕𝐮
⋅

𝜕𝐮
𝜕𝐸𝓁𝑖

]

. (33)

To avoid the expensive computation of 𝜕𝐮∕𝜕𝐸𝓁𝑖, we use the adjoint 
method to obtain 𝜕𝑃∕𝜕𝐸𝓁𝑖. That is, we add the sensitivity of the 
equilibrium equation, 𝐊𝐮 = 𝐅, to (33). By doing so, we obtain 

𝜕𝑃
𝜕𝐸𝓁𝑖

=
𝑚
∑

𝑘=1

𝑁
∑

𝑗=1

[

𝜆𝑗𝑘 + 𝜇ℎ𝑗𝑘 (𝐳,𝐮)
]

[ 𝜕ℎ𝑗𝑘 (𝐳,𝐮)
𝜕𝐸𝓁𝑖

+
𝜕ℎ𝑗𝑘 (𝐳,𝐮)

𝜕𝐮
⋅

𝜕𝐮
𝜕𝐸𝓁𝑖

]

+ 𝝃𝑇
(

𝐊 𝜕𝐮
𝜕𝐸𝓁𝑖

+ 𝜕𝐊
𝜕𝐸𝓁𝑖

𝐮
)

.

(34)

We collect all the terms in (34) involving 𝜕𝐮∕𝜕𝐸𝓁𝑖 which results in:

𝜕𝑃
𝜕𝐸𝓁𝑖

=
𝑚
∑

𝑘=1

𝑁
∑

𝑗=1

[

𝜆𝑗𝑘 + 𝜇ℎ𝑗𝑘(𝐳,𝐮)
] 𝜕ℎ𝑗𝑘(𝐳,𝐮)

𝜕𝐸𝓁𝑖

+

( 𝑚
∑

𝑘=1

𝑁
∑

𝑗=1

[

𝜆𝑗𝑘 + 𝜇ℎ𝑗𝑘(𝐳,𝐮)
] 𝜕ℎ𝑗𝑘(𝐳,𝐮)

𝜕𝐮
+ 𝝃𝑇𝐊

)

𝜕𝐮
𝜕𝐸𝓁𝑖

+ 𝝃𝑇 𝜕𝐊
𝜕𝐸𝓁𝑖

𝐮,

(35)

and select the adjoint vector 𝝃 such that these terms vanish, leading to 
the following expression: 

𝜕𝑃
𝜕𝐸

=
𝑚
∑

𝑁
∑

[

𝜆𝑗𝑘 + 𝜇ℎ𝑗𝑘 (𝐳,𝐮)
]
𝜕ℎ𝑗𝑘 (𝐳,𝐮)

𝜕𝐸
+ 𝝃𝑇 𝜕𝐊

𝜕𝐸
𝐮, (36)
𝓁𝑖 𝑘=1 𝑗=1 𝓁𝑖 𝓁𝑖

17 
where 𝝃 solves the adjoint problem: 

𝐊𝝃 = −
𝑚
∑

𝑘=1

𝑁
∑

𝑗=1

[

𝜆𝑗𝑘 + 𝜇ℎ𝑗𝑘 (𝐳,𝐮)
]
𝜕ℎ𝑗𝑘 (𝐳,𝐮)

𝜕𝐮
. (37)

Using Eq. (4), the sensitivity of the stiffness matrix with respect to 𝐸𝓁𝑖, 
which is required to evaluate 𝜕𝑃∕𝜕𝐸𝓁𝑖 in (36), is computed as 

𝜕𝐊
𝜕𝐸𝓁𝑖

=
𝑁
∑

𝓁=1

𝑚
∑

𝑘=1

𝜕𝑊𝓁𝑘
𝜕𝐸𝓁𝑖

𝐤𝓁𝑘, (38)

where 

𝜕𝑊𝓁𝑘
𝜕𝐸𝓁𝑖

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑚
∏

𝑗=1
𝑗≠𝑘,𝑗≠𝑖

(

1 − 𝜏𝐸𝓁𝑗
)  if 𝑘 = 𝑖

−𝜏𝐸𝓁𝑘

𝑚
∏

𝑗=1
𝑗≠𝑘,𝑗≠𝑖

(

1 − 𝜏𝐸𝓁𝑗
)  if 𝑘 ≠ 𝑖

(39)

and 𝐤𝓁𝑘 is the element stiffness matrix of element 𝓁 when filled entirely 
with material k.

The remaining terms necessary for computing 𝜕𝑃∕𝜕𝐸𝓁𝑖 are
𝜕ℎ𝑗𝑘∕𝜕𝐸𝓁𝑖 and 𝜕ℎ𝑗𝑘∕𝜕𝐮, and these are derived below for completeness. 
For instance, 𝜕ℎ𝑗𝑘∕𝜕𝐸𝓁𝑖 is obtained explicitly using Eq. (24) and the 
definition of 𝑔𝓁𝑖(𝐳,𝐮) given in Eq. (7), as shown below: 

𝜕ℎ𝑗𝑘 (𝐳,𝐮)
𝜕𝐸𝓁𝑖

=

⎧

⎪

⎨

⎪

⎩

𝛬𝑗𝑘

(

𝛬2
𝑗𝑘 + 1

)

𝛿𝑗𝓁𝛿𝑘𝑖 when 𝒈𝑗𝑘(𝐳,𝐮) < − 𝜆𝑗𝑘
𝜇

0 otherwise,
(40)

where 𝛿𝑗𝓁 is the Kronecker delta operator. Moreover, 𝜕ℎ𝑗𝑘∕𝜕𝐮 is also 
obtained from Eq. (24) and using the chain rule as follows: 
𝜕ℎ𝑗𝑘 (𝐳,𝐮)

𝜕𝐮

=

⎧

⎪

⎨

⎪

⎩

𝜕𝑔𝑗𝑘
𝜕𝛬𝑗𝑘

(

𝜕𝛬𝑗𝑘

𝜕𝐼1

𝜕𝐼1
𝜕𝝈𝑗𝑘

+ 𝜕𝛬𝑗𝑘

𝜕𝐽2

𝜕𝐽2
𝜕𝝈𝑗𝑘

+ 𝜕𝛬𝑗𝑘

𝜕𝐽3

𝜕𝐽3
𝜕𝝈𝑗𝑘

)

⋅
𝜕𝝈𝑗𝑘

𝜕𝐮 when 𝒈𝑗𝑘(𝐳,𝐮) < − 𝜆𝑗𝑘
𝜇

𝟎 otherwise.

(41)

The sensitivities of the stress invariants 𝐼1, 𝐽2, and 𝐽3, with respect 
to the vector of Cauchy stresses are given by 
𝜕𝐼1
𝜕𝝈𝑗𝑘

= 𝐌
𝑇
,

𝜕𝐽2
𝜕𝝈𝑗𝑘

= 2
3
𝐕𝝈𝑗𝑘, and

𝜕𝐽3
𝜕𝝈𝑗𝑘

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑠22𝑠33 − 𝜎223
𝑠11𝑠33 − 𝜎213
𝑠11𝑠22 − 𝜎212

2
(

𝜎13𝜎12 − 𝑠11𝜎23
)

2
(

𝜎12𝜎23 − 𝑠22𝜎13
)

2
(

𝜎23𝜎13 − 𝑠33𝜎12
)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+
𝐽2
3

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
1
1
0
0
0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(42)

for 3D problems and 
𝜕𝐽3
𝜕𝝈𝑗𝑘

= 1
3

(

𝐽2 −
1
3
𝐼21

)

𝐌
𝑇
+ 2

9
𝐼1𝐕𝝈𝑗𝑘 (43)

for 2D problems.
Eq.  (41) is fully defined after computing the sensitivity of the 

Cauchy stresses vector with respect to the displacement vector, i.e.,
𝜕𝝈𝑗𝑘∕𝜕𝐮. Using the definition of 𝝈𝑗𝑘 from Eq. (14) and the chain rule, 
we obtain: 
𝜕𝝈𝑗𝑘

𝜕𝐮
= 𝐃0𝑖𝐁𝓁 . (44)

Finally, the sensitivity of the unified yield function with respect to 
the stress invariants is obtained from Eqs. (8)–(9) and are given by 
⎧

⎪

⎪

⎨

⎪

⎪

𝜕𝛬𝑗𝑘
𝜕𝐼1

=
𝜕𝜎eq𝑗𝑘
𝜕𝐼1

= 𝛽 + 2𝛾̂𝐼1
𝜕𝛬𝑗𝑘
𝜕𝐽2

=
𝜕𝜎eq𝑗𝑘
𝜕𝐽2

= 𝜕𝛼̂(𝜃)
𝜕𝜃

𝜕𝜃
𝜕𝐽2

√

3𝐽2 +
3𝛼̂(𝜃)
2
√

3𝐽2
𝜕𝛬𝑗𝑘 =

𝜕𝜎𝑐𝑞𝑗𝑘 = 𝜕𝛼̂(𝜃) 𝜕𝜃 √

3𝐽 ,

(45)
⎩ 𝜕𝐽3 𝜕𝐽3 𝜕𝜃 𝜕𝐽3 2



J.P. Giraldo-Isaza and O. Giraldo-Londoño Composite Structures 375 (2026) 119754 
Fig. B.1. Postprocessing routine sequence. First, separate isosurfaces are extracted for each material from the projected density fields, which can produce geometric 
intersections and necking at the interface (Isosurface 1 and Isosurface 2). A composite density field is then constructed and its isosurface is used to generate 
a tetrahedral mesh (TetMesh) representing the overall geometry. This mesh is partitioned into material-specific submeshes based on the position of element 
centroids relative to each material isosurface, producing clean, non-overlapping boundaries. The final material isosurfaces eliminate necking artifacts and are 
ready for fabrication. The bottom panel shows a beam from Section 5, where the original interface (red inset) exhibits necking, while the postprocessed interface 
(green inset) is smooth and continuous.
where the partial derivatives of 𝜕𝛼̂(𝜃)∕𝜕𝜃, 𝜕𝜃∕𝜕𝐽2 and 𝜕𝜃∕𝜕𝐽3 can be 
obtained explicitly from Eqs. (15)–(19).

A.1. Sensitivity analysis for multiple load cases

The AL sub-problem (27) can be extended to multiple load cases as 
follows: 

𝐽 (𝐳,𝐮) = 𝑓 (𝐳) + 1
𝑚𝑛𝑁

𝑃 (𝐳,𝐮) , (46)

where 𝑛 denotes the number of load cases, and the penalty term is given 
by 

𝑃 =
𝑛
∑

𝑐=1

𝑚
∑

𝑘=1

𝑁
∑

𝓁=1

[

𝜆(𝑐)𝓁𝑘ℎ
(𝑐)
𝓁𝑘

(

𝐳,𝐮𝑐
)

+
𝜇
2
ℎ(𝑐)𝓁𝑘

2 (
𝐳,𝐮𝑐

)

]

. (47)

The previously derived sensitivities from (31) and (32) remain valid 
for the multiple-load case problem. However, as in the single-load case, 
we follow an adjoint sensitivity analysis procedure and reformulate the 
corresponding sensitivity with respect to 𝐸𝓁𝑖 as follows:

𝜕𝑃
𝜕𝐸𝓁𝑖

=
𝑛
∑

𝑐=1

[ 𝑚
∑

𝑘=1

𝑁
∑

𝑗=1

[

𝜆(𝑐)𝑗𝑘 + 𝜇ℎ(𝑐)
𝑗𝑘

(

𝐳,𝐮𝑐
)

]

(

𝜕ℎ(𝑐)
𝑗𝑘

(

𝐳,𝐮𝑐
)

𝜕𝐸𝓁𝑖
+

𝜕ℎ(𝑐)
𝑗𝑘

(

𝐳,𝐮𝑐
)

𝜕𝐮𝑐
⋅
𝜕𝐮𝑐
𝜕𝐸𝓁𝑖

)

+ 𝝃𝑇𝑐

(

𝐊
𝜕𝐮𝑐
𝜕𝐸𝓁𝑖

+ 𝜕𝐊
𝜕𝐸𝓁𝑖

𝐮𝑐
)

]

, (48)

where 𝐮𝑐 is the displacement vector associated with load case 𝑐, ob-
tained from the equilibrium equation 𝐊𝐮𝑐 = 𝐅𝑐 . As for the single-load 
case, we group all terms involving 𝜕𝐮𝑐∕𝜕𝐸𝓁𝑖 which results in: 

𝜕𝑃
𝜕𝐸𝓁𝑖

=
𝑛
∑

𝑐=1

𝑚
∑

𝑘=1

𝑁
∑

𝑗=1

[

𝜆(𝑐)𝑗𝑘 + 𝜇ℎ(𝑐)𝑗𝑘 (𝐳,𝐮𝑐 )
] 𝜕ℎ(𝑐)𝑗𝑘 (𝐳,𝐮𝑐 )

𝜕𝐸𝓁𝑖

+
⎛

⎜

⎜

⎝

𝑛
∑

𝑐=1

𝑚
∑

𝑘=1

𝑁
∑

𝑗=1

[

𝜆(𝑐)𝑗𝑘 + 𝜇ℎ(𝑐)𝑗𝑘 (𝐳,𝐮𝑐 )
] 𝜕ℎ(𝑐)𝑗𝑘 (𝐳,𝐮𝑐 )

𝜕𝐮𝑐
+ 𝝃𝑇𝑐 𝐊

⎞

⎟

⎟

⎠

𝜕𝐮𝑐
𝜕𝐸𝓁𝑖

+ 𝝃𝑇𝑐
𝜕𝐊
𝜕𝐸𝓁𝑖

𝐮𝑐 .

(49)
18 
To avoid the expensive computation of 𝜕𝐮𝑐∕𝜕𝐸𝓁𝑖, we choose the 
corresponding adjoint vectors 𝝃𝑐 such that these terms vanish, leading 
to the following expression: 

𝜕𝑃
𝜕𝐸𝓁𝑖

=
𝑛
∑

𝑐=1

[ 𝑚
∑

𝑘=1

𝑁
∑

𝑗=1

[

𝜆(𝑐)𝑗𝑘 + 𝜇ℎ(𝑐)𝑗𝑘
(

𝐳,𝐮𝑐
)

] 𝜕ℎ(𝑐)𝑗𝑘
(

𝐳,𝐮𝑐
)

𝜕𝐸𝓁𝑖
+ 𝝃𝑇𝑐

𝜕𝐊
𝜕𝐸𝓁𝑖

𝐮𝑐

]

, (50)

where 𝝃𝑐 solves the adjoint problem: 

𝐊𝝃𝑐 = −
𝑚
∑

𝑘=1

𝑁
∑

𝑗=1

[

𝜆(𝑐)𝑗𝑘 + 𝜇ℎ(𝑐)𝑗𝑘
(

𝐳,𝐮𝑐
)

] 𝜕ℎ(𝑐)𝑗𝑘
(

𝐳,𝐮𝑐
)

𝜕𝐮𝑐
. (51)

The remaining partial derivatives in (50) and (51) are computed in the 
same manner as in the single-load case.

Appendix B. Postprocessing of multi-material interfaces

In the context of density-based topology optimization, the optimized 
material distribution is typically interpreted by extracting an isosurface 
from the optimized density field using a cutoff density (e.g., 0.5). 
Although this approach works well for single-material problems, it 
presents issues in multi-material topology optimization. Specifically, 
when separate isosurfaces are extracted for each candidate material, 
geometric intersections between neighboring isosurfaces can create 
narrow necking regions at material interfaces. These necking artifacts 
result in localized stress concentrations at material interfaces that may 
compromise the structural performance of the fabricated multi-material 
designs.

To address this issue, we implemented a postprocessing routine 
inspired by the strategy suggested by Sanders et al. [78] and illustrated 
on Fig.  B.1a. This postprocessing scheme eliminates necking artifacts by 
first constructing a composite density field defined as: 

𝑉𝓁 = min

( 𝑚
∑

𝑖=1
𝑉𝓁𝑖, 1

)

. (52)

An isosurface is extracted from the composite density field and used 
to generate a tetrahedral mesh (TetMesh) using the iso2mesh tool-
box [79], which relies on TetGen [80] to represent the overall structure. 
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Fig. C.1. Convergence plots for the corbel design problem: (a) single-material case using the von Mises yield criterion, (b) single-material case using the Drucker–
Prager yield criterion, and (c) multi-material case. The results are obtained after discretizing one-half of the domain using 314,432 regular hexahedral elements. 
For each case, the change of volume fraction along the AL iterations, k, is presented in black, while the evolution of the maximum normalized equivalent stress 
is shown in red. The shaded areas under the volume fraction curve illustrate the contribution of each material to the total volume fraction.
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Fig. C.2. Convergence plots for the multi-material airless tire problem obtained after discretizing one-half of the domain using 77,200 regular hexahedral elements. 
The change of volume fraction along the AL iterations, k, is presented in black, while the evolution of the maximum normalized equivalent stress is shown in 
red. The shaded areas under the volume fraction curve illustrate the contribution of each material to the total volume fraction.
Table 9
Material properties for the 2D multi-material corbel problem.
 Material property Orange material Purple material 
 Weight factor, 𝛾𝑖 1 1  
 Young’s modulus, E (GPa) 60 100  
 Poisson’s ratio, 𝜈 0.3 0.3  
 von Mises stress limit, 𝜎lim (MPa) 90 100  
Individual isosurfaces are then generated for each candidate material 
and used to determine the material phase associated with each tetra-
hedral element. This is accomplished by checking whether the centroid 
of an element lies within a given material isosurface. Once identified, 
the element is tagged with the corresponding material index. In the rare 
event that an element centroid lies within multiple material isosurfaces, 
the element is assigned to the first isosurface it intersects, ensuring a 
unique material assignment for every element.

Once all tetrahedral elements have been assigned a material index, 
the TetMesh is partitioned into 𝑚 separate meshes—one per material. 
The outer surface of each mesh is then identified, resulting in a set of 
𝑚 non-overlapping isosurfaces that are free of necking artifacts. These 
cleaned isosurfaces are exported as a 3MF file, a format suitable for 
multi-material additive manufacturing.

This postprocessing procedure effectively eliminates interface neck-
ing artifacts caused by intersecting isosurfaces and mitigates the as-
sociated stress concentrations. Fig.  B.1b  illustrates the improvement 
achieved using our postprocessing routine. The red inset, located to 
the right of the beam topology, highlights a necked interface obtained 
using the conventional multi-isosurface approach, while the green inset 
shows the same region after applying our postprocessing routine.

Appendix C. Convergence plots for selected problems

This section summarizes the convergence behavior of all problems 
discussed in this manuscript. The convergence plots track how the 
volume fraction, 𝑉 𝐹 , and the maximum equivalent stress, max(𝜎̃𝑒𝑞𝓁𝑖 ) =
max(𝐸𝓁𝑖𝜎

𝑒𝑞
𝓁𝑖 ), evolve at the end of each AL subproblem, 𝑘. Fig.  C.1 

shows the convergence curves for the three corbel designs reported 
in Section 4.1. Figs.  C.1a and C.1b show the results for the single-
material designs based on the von Mises and Drucker–Prager yield 
criteria, respectively, while Fig.  C.1c shows the convergence behavior 
of the two-material design.
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In all three cases, the design domain initially contains 50% of the 
material density at each element (i.e., 𝑧𝓁𝑖 = 0.5, 𝓁 = 1,… , 𝑁 and 
𝑖 = 1,… , 𝑚). For the two-material design shown in Fig.  C.1c, this 
initialization produces a total volume fraction of 100% due to the 
overlap of the two candidate materials. During the initial iterations, 
the volume fraction increases slightly before gradually decreasing as 
the AL iterations proceed. The designs eventually converge to volume 
fractions of 16.3%, 17.4%, and 14.0% for the single-material von 
Mises, the single-material Drucker–Prager, and the two-material cases, 
respectively. A consistent trend also appears in the evolution of the 
maximum equivalent stress. During the initial iterations, the maximum 
equivalent stress decreases as the volume fraction increases, and then 
reaches a peak once the volume fraction starts to decrease. After this 
peak, the maximum equivalent stress oscillates with a progressively 
smaller amplitude until it stabilizes at the limiting value of 1.

Fig.  C.2 presents the convergence plot for the multi-material airless 
tire design discussed in Section 4.2. Unlike the results discussed before, 
here the maximum equivalent stress remains below the prescribed limit 
throughout the optimization iterations. Convergence is achieved as the 
volume fraction decreases and the maximum equivalent stress reaches 
the maximum allowable value of 1.

Fig.  C.3 presents the convergence plot for the multi-material beam 
discussed in Section 5, which considered three different yield criteria, 
namely Drucker–Prager, Willam–Warnke, and Mohr–Coulomb. In this 
problem, the volume fraction consistently decreases throughout the 
AL iterations for all three design cases. Meanwhile, the maximum 
equivalent stress exhibits a rapid increase during the initial itera-
tions, followed by oscillations above the allowable limit of 1 until 
convergence is achieved.

Appendix D. Sensitivity to algorithmic parameters

This appendix investigates the sensitivity of the proposed frame-
work to key algorithmic parameters that influence the quality of the 
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Fig. C.3. Convergence plots for the multi-material beam problem: (a) results using the Drucker–Prager yield criterion, (b) results using the Willam–Warnke 
yield criterion, and (c) results using the Mohr–Coulomb yield criterion. The results are obtained after discretizing one-half of the domain using 98,784 regular 
hexahedral elements. For each case, the change of volume fraction along the AL iterations, k, is presented in black, while the evolution of the maximum equivalent 
stress is shown in red. The shaded areas under the volume fraction curve illustrate the contribution of each material to the total volume fraction.
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Fig. D.1. Effect of the mixing penalty term on the final topology for the Drucker–Prager beam. (a) Continuation scheme with 𝜏 initialized at 0 and increased 
by 0.5 every two AL iterations until reaching 𝜏 = 1. (b) Continuation scheme with 𝜏 initialized at 0 and increased by 0.5 every five AL iterations until reaching 
𝜏 = 1. (c) No continuation scheme, with 𝜏 = 1 applied from the beginning of the optimization.
optimized designs. While the results discussed previously focused on 
demonstrating the overall capabilities of our AL-based framework, here 
we provide a more detailed examination of how parameter choices 
affect the optimization results. We first study the effects of continuation 
of the mixing penalty term 𝜏 used in the DMO interpolation function, 
and then examine the influence of the cutoff density 𝜂̄ and projection 
sharpness 𝛽 in the threshold projection of the design variables.

D.1. Influence of the continuation on the mixing penalty term

Fig.  D.1 examines how different continuation strategies for the 
mixing penalty term, 𝜏, affect the optimized beam designs discussed 
in Section 5.3. For illustration purposes, we focus on the beam de-
signed using the Drucker–Prager yield criterion. Here, we compare 
three strategies: (a) the baseline scheme from Section 5.3, where 𝜏
starts at 0 and increases by 0.5 every two AL iterations until reaching 
a value of 1; (b) a slower continuation using the same 0.5 increments, 
but this time applied every five AL iterations; and (c) no continuation, 
where 𝜏 = 1 is enforced from the start.

A comparison between Figs.  D.1a–b shows that the rate at which 𝜏
increases affects the final design. Nevertheless, the overall topological 
features remain qualitatively similar between these two designs, with 
the resulting volume fractions differing by only 2%. In contrast, en-
forcing 𝜏 = 1 from the start (Fig.  D.1c) produces a noticeably different 
material distribution, wherein the tension-dominated region along the 
bottom chord contains a combination of VeroCyan and Digital ABS), 
unlike the other two designs where this region is composed solely 
of Digital ABS. Despite producing a different topology, the optimized 
volume fraction for case (c) is almost identical to that for case (b). 
These differences in optimized designs are expected in highly nonlin-
ear and non-convex problems such as the stress-constrained topology 
optimization problem introduced here, where even small changes in 
input parameters (e.g., those related to the DMO interpolation function) 
can steer the optimizer toward a different local minimum. Based on 
these observations, we adopted the parameter set from Fig.  D.1a for 
the results presented in Section 5.3, as it produced the most consistent 
designs across the yield criteria studied.

D.2. Influence of the threshold projection parameters

Here we investigate the influence of the cutoff density 𝜂̄ and the 
projection sharpness 𝛽 in Eq. (2) on the optimized topologies of a 2D 
corbel problem previously studied by Kundu et al. [53]. The problem 
considers two candidate materials with properties summarized in Table 
9. Consistently with [53], the results we discuss next are obtained for a 
design domain discretized into 40,000 regular quadrilateral elements, 
and using a filter radius of 𝑅 = 0.19 m.

Fig.  D.2 illustrates the topologies obtained after solving the first 10 
AL subproblems. We selected to display the results at this stage because 
variations in 𝜂̄ and 𝛽 have the most pronounced effect on topology 
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during the early stages of the optimization process. In Fig.  D.2a, the 
cutoff density is fixed at 𝜂̄ = 0.5, while the projection sharpness takes 
values of 𝛽 = 1, 𝛽 = 5, or 𝛽 = 10. When 𝛽 = 1, the topology 
exhibits blurred boundaries and an increased volume fraction due to the 
intermediate densities along the edges. Increasing 𝛽 to 5 reduces these 
diffuse regions and sharpens the boundaries, although some blurring 
persists. A further increase to 𝛽 = 10 introduces stronger nonlinearity, 
steering the optimizer toward a different local minimum with a lower 
volume fraction and more small-scale features.

Fig.  D.2b explores the effect of varying the cutoff density 𝜂̄ while 
keeping the projection sharpness fixed at 𝛽 = 5. For this study, we 
consider three cutoff values: 𝜂̄ = 0.4, 𝜂̄ = 0.5, and 𝜂̄ = 0.6. The 
results demonstrate a strong sensitivity to 𝜂̄, as each case converges 
to a different topology. Similarly to previous discussions, this behavior 
reflects the highly nonlinear and non-convex nature of the optimization 
problem, where even small changes in input parameters can lead the 
optimizer to different local minima. Lower cutoff values (𝜂̄ = 0.4) 
promote more compact designs, possibly due to the early removal of 
understressed regions, whereas higher cutoff values (𝜂̄ = 0.6) allow 
material to be distributed further from the corners, producing a finer 
and more distributed layout.

Appendix E. Nomenclature

 𝐸𝓁𝑖 Penalized densities for element 𝓁 and 
candidate material i using the SIMP 
interpolation function

 

 𝐼1 First invariant of the Cauchy stress tensor  
 𝐽2 Second invariant of the Cauchy stress tensor  
 𝐽3 Third invariant of the Cauchy stress tensor  
 𝑁𝑐 Total number of stress constraints  
 𝑃 (𝐳,𝐮) Penalization term in the AL function  
 𝑅 Filter radius  
 𝑊𝓁𝑖 Stiffness interpolation function  
 𝐽 (𝑘) Augmented Lagrangian function at the kth 

sub-problem
 

 𝑉 𝐹 Multi-material volume fraction  
 N Number of elements in the finite element 

mesh
 

 𝑓 (𝐳) Objective function  
 𝑔𝓁𝑖(𝐳,𝐮) Stress constraint of element 𝓁 and material i 
 ℎ𝓁𝑖 (𝐳,𝐮) Modified stress constraint of element 𝓁 and 

material i for the AL method with inequality 
constraints

 

 𝑛 Number of load cases  
 𝑝 SIMP penalization parameter  
 𝑞 Nonlinear filter exponent  
 m Number of candidate materials  
 𝛬𝓁𝑖 Unified yield function  
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Fig. D.2. Influence of the threshold projection parameters on the optimized topologies of the 2D corbel benchmark (𝐿 = 2 m, 𝑃 = 21.2 MN). Results are shown 
after the first 10 AL subproblems. (a) Fixed cutoff density 𝜂̄ = 0.5 with three projection sharpness values: 𝛽 = 1, 5, 10. (b) Fixed projection sharpness 𝛽 = 5 with 
three cutoff densities: 𝜂̄ = 0.4, 0.5, 0.6.
   
 𝛽 Parameter used to control the aggressiveness 

of the threshold projection function
 

 𝜂̄ Threshold density cutoff value  
 𝛾𝑖 Weight factor associated with candidate 

material i
 

 𝛼̂ Deviatoric component of the unified yield 
function

 

 𝛽 Unified yield function parameter  
 𝛾̂ Unified yield function parameter  
 𝜃̂ Modified Lode angle  
 𝜇(𝑘) Penalty parameter at the kth iteration of the 

AL method
 

 𝜎𝑒𝑞𝓁𝑖 Equivalent stress measure at the centroid of 
element 𝓁 for material i

 

 𝜎lim von Mises yield stress  
 𝜎𝑏 Yield stress in equibiaxial compression  
 𝜎𝑐 Yield stress in uniaxial compression  
 𝜎𝑡 Yield stress in uniaxial tension  
 𝜃 Lode angle  
 𝛼̃ Parameter to update the penalty parameter 

𝜇(𝑘)
 

 𝜎̃𝑒𝑞𝓁𝑖 Normalized equivalent stress measure  
 𝐁𝓁 Strain displacement matrix at the centroid 

of element 𝓁
 

 𝐃0𝑖 Material moduli matrix of the solid material 
𝑖

 

 𝐕𝑖 Vector of element volume fractions for 
material i
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 𝐅𝑐 Force vector associated with load case 𝑐  
 𝐀 Vector of element area (in 2D) or volume 

(in 3D) of each finite element
 

 𝐌 Vector used to evaluate the first invariant of 
the Cauchy stress tensor

 

 𝐕 Matrix used to evaluate the second invariant 
of the Cauchy stress tensor

 

 F Global force vector  
 K Global stiffness matrix  
 P Filter matrix  
 𝐤𝓁 Local stiffness matrix of element 𝓁  
 𝐮𝓁 Displacement vector of element 𝓁  
 𝐳 Matrix of design variables  
 𝐮𝑐 Displacement vector associated with load 

case 𝑐
 

 𝐲𝑖 Vector of filtered densities  
 u Global displacement vector  
 𝝀(𝑘)𝒋 Vector of approximated Lagrange multipliers 

at the kth iteration of the AL method
 

 𝝃𝑐 Adjoint vector associated with load case 𝑐
used for sensitivity evaluation

 

 𝝈𝓁𝑖 Vector of Cauchy stress values for material 𝑖
at the centroid of element 𝓁

 

Data availability

Data will be made available upon request.
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